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PREFACE

The practical implications of linear.sequential filtering (or
Kalman-Bucy filtering) theory were quickly recognized by the engineering
community as an important contribution to real-time data processing. Some
of its numerous successful applications have been made to aerospace en-
gineering system. The typical examples are orbit determination and trajec-
tory estimation problems. Since these problems generally are concerned with
continuous nonlinear dynamic systems and discrete observations, nonlinear
filtering has been a theme of interest in the field of orbit determination.

It has been demonstrated that the optimal nonlinear filter requires
the computation of an infinite number of moments and generally its implementa-
tion is not practical. This leads one to seek an approximate solution to the
optimal nonlinear filtering problem. Several approximate nonlinear filters
have been proposed previously and, for the most part, these can be classified
as one of two basic types of second order filters. The first is the truncated
second order filter which utilizes a Taylor series expansion of the dynamic
system and the state-observation relationships, followed by a truncation of
the third and higher order moments. The other is the Gaussian second order
filter which employs a Taylor series expansion and approximations of the
fourth order moments in terms of the second order moments, under the assump-
tion that the conditional density function is Gaussian. The unique feature
of both filters is.found in the fact that a random forcing term occurs in the
covariance equation. The random forcing term which enters into the covariance
equation in a linear manner is considered to have potential for causing the
conditional covariance matrix to be negative definite over some non-zero

time interval. This term is often neglected in the modified Gaussian or



truncated second order filters.

This study is concerned with the developmént of an approximate non-
linear filter using the Martingale theory and appropriate smoothing proper-
ties. Both the first order and the second order moments are.estimated. The
filter, which is developed, can be classified as a modified Gaussian second
order filter. Its performance is evaluated in a simulated study of the prob-
lem of estimating the state of an interplanetary space vehicle during both a
simulated Jupiter fly-by and a simulated Jupiter orbiter mission. In addi-
tion to the modified Gaussian second order filter, the modified truncated
second order filter is evaluated also in the simulated study. Results ob-
tained with each of these filters are compared with numerical results obtained
with the extended Kalman filter and the performarice of each filter is deter-
mined by comparison with the actual estimation errors. Thé simulations are
designed to determine the effects of the second order terms in the dynamic
state relations, thg observation-state‘relations and in the Kalman gain com-
pensation term. The result of an extensive simulation shows that the Kalman
gain compensated filter which includes only the Kalman gain compensation term
is superior to all of the other filters.
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LIST OF SYMBOLS

The following list tabulates all of the significant symbols used in

this study and each symbol is accompanied by a brief description.

n the number of state variables
m the number of different types of observations
t indicates a particular instant of time at which a discrete obser-

vation is made

X state variable at time t

t

X state variable at time t+s

t+s

Vs observation at time t = i

Yt available observations at time +t , that is, Yt. = {yi :0 <1

or the o-field generated by the observations

f(x,t) state dynamic equation, nx1 vector
fX partial derivatives of £(-) w;r.t.x s NXn matrix
h(x) state-observation relationship, mx1 vector
hX partial derivatives of h(*)w.r.t.x , mxn matrix
fi izl’—1 component of f(-)
hi izh-component of h(-)
Bf, of, 3f ]
£, = = 2 . L 1xn vector
ix ax, 9X ax
1 2 n |
3h; oh, oh, |
h. = axl axl .o axl 1xn vector
x | 71 72 n |

Coviii



W2F, W2 F VIE .
1 1 i
BV ; . see TR
axl 0x1ax2 Axlaxn
£, = . : nxn matrix
ixx . .
32F,  32f, 32F,
i i i
« e e 2
anaxl axn8x2 axn |
ﬁzh. 52h, 32h,
i i i
2 - e o
Bx1 Bxlax2 8x18Xn
h. = . . nxn matrix
ixx . .
32h 32h, 32n,
i i
o » 2
-Exnaxl 'c‘o.xnax2 axn ]
trace (fixxP)
trace (f, P)
£ : P = 2% nx1l vector
XX :
trace (f P)
L TnXX
trace (hlxxP)
trace (h. P)
hXX : P = . 2% mx1 vector

trace (h P)
- mxx |

where P is an nxnh matrix.
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LIST OF DEFINITIONS

The following definitions are used consistantly throughout this

study.

7 = ] Y i ion i £ v

yt+s/t E[yt+s/ t] predicted observation on the basis o t

ﬁt/t = B[Xt/Yt] posterior estimate of x, on the basis of Yt s
which is the optimal estimate of X, at time t

ﬁ = : - . . . f Y

s/t E[Xt+s/Yt] apriori estimate of Xits on the basis o £ o
which is also the optimal estimate at t+s , pro-
vided that no other observation is made after t .

;{ = - S . . *

£/t Xt Xt/t posterior estimation error

Xive/t = Firs T Riyg/p apriori estimation error, if s. = 0 apriori es-
timation error becomes posterior estimation error
tt/t

\Y = R iT nxn matrix of posterior estimation error square,

t t/t7t/t
each element in this matrix is a random variable

- ST . . s . .
= x squares

Pt+s xt+s/txt+s/t nxn matrix of apriori estimation error sq » each
element of this matrix is a random variable

0t/t = B[Vt/Yt] postérior conditional covariance matrix

§t+s/t = E[Vt+s/Yt] apriori estimate of posterior estimation error
squares Vt+s on the basis of Yt » NXn matrix

2 = E P Y . 3 . . - i A -

Pt+s/t [ t+s/ t] apriori conditional covariance matrix, Pt+s/t
7 = \7 1 £ =
Vits/t t/t 4 ® 0
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CHAPTER 1
INTRODUCTION

1.1 Preliminary Remarks

In the field of gpace tracking and guidance, one basic requirement
for spacecraft guidance is the capability to obtain and to rapidly process
observations to determine an estimate of the spacecraft trajectory. This re-
quirement initiates the search for mathématical techniques which are compu-
tationally efficient, but which possess a high degree of accuracy. Follow-
ing the precise formulations of the linear sequential estimation theory by
Kalman and Bucy (6,7), the practical implications of the theory were recog-
nized and numerous succeséful applications have beén made in the field of
orbit determination and trajecfory estimation problems. However, these ap-
plications generally are concerned with nonlinear continuous dynamic systems
and nonlinear state-observation relationships and, hence, the linear esti-
mation theory cannot be applied directly. As a matfer of fact; it is not a
simple-task to apply the linear estimation theory to orbit determination
problems. Usually nonlinear dynamic systems and state-observation relation-
ships are linearized about a nominal (or reference) trajectory under the as-
sunption that the true trajectory is sufficiently close to the reference tra-
jectory, and then the linear estimation theory is applied to fhe linearized
systems. Conceptually, there are two ways to carry out the linearizations
and the resulting filters are somewhat different from each other. The dis-
tinction is how the nominal trajectory is chosen. If a prescribed trajectory
is chosen as a nominal trajectory, the original Kalman-Bucy linear filter
can be directly applied to the linearized system which governs the state and

the observation deviations from the prescribed nominal values of the state



and observation. Although this approach appears to be conceptually simple,
it suffers from severai points. First, if the nominal trajectory is not
close enough to the trueé trajéctory, the basic assumption used in the lin-
earization procedure is violated and the estimate of the deviation from the
nominal trajectory filter can lead to inaccurate results and often diverges.
Furthermore, it is intuitively more appealing to take the current estimate,
rather than a prescriﬁed trajectory, as a nominal trajectory and conduct

the linearization about the current estimate instead of a preécribed trajec-
tory. In this case, the linearized system will involve deviation in the
state and the observation from the current estimates of the state and obser-
vation instead of values related to a prescribed nominal. The original
Kalman-Bucy linear filter can be applied to the above linearized system. The
advantages of using the current estimate as a néminal trajectory are that a
nominal which is closer to the true trajectofy can be used and that the fi;—
tering procedures can be simplified due to the fact that all the propagated
state deviations will become identically zero: This concept will be clearly
discussed in Section 1.3. In order to represent this situation, "the extend-
ed Kalman (EK) filter" proposed by Jazwinski (2) and distinguished from the
prescribed nominal trajectory filter will be used.

It is well known that all of the information about the state pro-
vided by the measurements is contained in the prbbability density function
of the state conditioned upon the entire past history of measurements. From
this conditional probability density function, one can, in principle, deter-
mine the optimal filter. In general, the optimal filter is expressed in

terms of the moments of the conditional probability density function. Hence,



this conditional denéity function becomes a prime ingredient for studies of
optimal filtering.

Several authors have considered the problem of deriving a dynami-
cal equatién for the conditional density function when the dynamic state
noisé and observation noise are both jointly Gaussian and white. The most
recent pattern of research in this field appears to have been initiated by
Stratononich (12) and Kushner (8,9). The formal character of thié initial
work stimulated numerous studies of nonlinear filtering which ha&e attempted
to extend, and to obtain a more rigoroué verification of these initial re-
sults. The method used by Stratononich and Kushner is based on a discrete
time model, and an iterative applicétion of Bayes' rule is used to obtain a
representation of the conditional density function. The solution of the
continuous time problem is obtained by a limiting process.

Although the central ideas and methods wére all supplied by
Stratonovich and Kushner, and most other papers in this area are just con-
cerned with extention of thesé basic ideas, Bucy's (4,5) approach to the op-
timal nonlinear filtering problem is rather unique and more mathematical than
Stratonovich and Kushner's. However, the results which he obtained for the
Gaussian state and observation noise case were identical to those of Kushner.
An important intermediate result of Bucy's work is that of a representation
theorem which demonstrates how the posterior conditional density function at
some instant of time can be represented as a function of the apriori density,
P(X(to)) and the conditional expectation of an exponential function of the
observational data over the time interval (to,t)

In addition to the above research, Mortenson (14), Cox (25) and

Detchmendy et al. (21) approach the nonlinear filtering problem from the



control theoretical point of view. Théy formed a likely hood function and
maximized: the function in various ways, e.g., dynamic progfamming‘or
Pontryagiﬁ's maximum principle.

Fisher‘(23) presented a unified and compact development of the non-
linear filtering problem for a broad class of Markov signal proéesses, by
making.use of the characteristic function technique. The idea of approaching
the continuoué time nonlinear estimation problem from the innovation process
approach was suggested by Frost (33).

There have been a number of associated approximation methods de-
veloped. Noteable among those are those of Bucy (4,5), Kushner (10),
Jazwinski (1,2,3), Bass et al. (18,20), Schwartz (19) and Athans et al. (27).
Most of the references cited above utilize techniques that are closely re-
lated to the methods introduéed by Kushner (10) and Bucy (4), namely, Taylor
series expansion and the assumption of a Gaussian density function or Taylor
series expansion and truncation. Utilizing the Taylor series expansion tech-
nique, there are two basic types of second order filters which have been de-
veloped. First, it is assumed that the third and higher order moments are
negligible. The resulting filter, referred to as the truncated second order
filter, was developed by Jazwinski (1,2,3) and independently by Bass, ﬁorum
and Schwartz (éo) who extended the idea of Bucy (4) to the arbitrary n-dimen-
sional case. Schwartz (19), Jazwinski (3) and Fisher (24) independently de-
veloped the Gaussian second order filter. In this approximation, the fourth
order moments are approximated in terms of the second order moments under the
assumption that the conditional density function is Gaussian.

A significant feature of both the truncated and the Gaussian second

order filters is the presence of a random forcing term in the covariance



equation.- The presence of the random forcing term is, in principie, justi-
fiable. However, there has been considerable controversy'associéted with
the presence of this term.

The.term enters with a plus sign in one filter and with a minus
sign in the other. Furthermore, the term enters in linear manner and there
is a possibility that abnegative variance may result due to the sign of the
observation residﬁal. These considerations suggest considering a compromise
between the truncated and the Géussian second order filters. Jazwinski (3)
dropped the forcing term in the covariance equation for the compromise and
defined the modified truncated second order (MTSO) filter and the modified
Gau831an second order (MGSO) filter, respectively.

Athans, et al. (27) developed the modified Gaussian second order
filter using an assumption based on an intuition argument and applied the
filter to a simple one-dimensional free-fall reentry problem with range type
of measurement. The result of the simulations indicates considerable promise
for the MGSO filter.

In this report, the modified Gaussian.seéond order filter was
developed rigorogsly on the basis of the Martingale theory and smoothing pro-
perties of Loeve (34). The résulting algorithm was applied to a study of
the Jupiter fly-by and the Jupiter orbiter missions using range, range-rate,

star-planet and sun-planet angle measurements.

1.2 Kalman-Bucy Filter
Consider the linear dynamics system described by the linear vector

stochastic differential equation

dxt = F(t)xtdt + G(t)dst s, t >t (1.1)



Lig. (1.1) can be expressed formally as (see Ref. 15)

dxt :
a—t—- = F('t)x_t + G(t)ut , t > tO . . (1.2)

where %, is the nx1 state vector, F(+) and G(*) are, respectively,
nxn and nxr non-random, continuous matrix functions of time, and {Bt,t > to}

is an r-vector Brownian motion process with the statistics
E[dB 8] = Q(t)dt
t 't

The r-vector u_ is a white Gaussian vector process which can be regarded

as the time derivitives of Bt .

It is assumed that linear observations are taken at discrete time

instants, k

Y T OHOO® + v ko= 1,2, | (1.3)

where Yy is an m-vector of observations, H(+) is an mxn non-random,

bounded matrix function, and {Vk Jk = 1,2,...} is an m-vector, indepen-
dent Gaussian sequence, i.e., vy v N(O,Rk),Rk > 0 for all’ k . The dis-
tribution of X is Gaussian, i.e., X, N(ﬁO,PO) , and xO;{Bt} and
'{Vk} are assumed to be independent.
The fact that fhe minimum variance estimate is'given by the condi-
tional expectation (see Appendix F), leads to the requirement that the con-

ditional expectation 2% = E[Xt/Yt] for the above system be found. The

t/t

solution to this problem yields differential equations of evolution for the

~

and the covariance matrix P . Between

ditional expectatio
condi D n t+s/t

xt+s/t

observations, these relations satisfy the differential equations given in

Egs. (1.4) and (1.5), respectively.



d2't+s/t

i 2(t) = % ' (1.4)

t/t

F(t+s)ﬁt+s/t s

A

d
Pt+s/t
ds

N

Flres)P 0+ B, P (t4s) + G(t+s)Q(t+s)eT (tas) , D) = 0

t/t

where the superscript T indicates the transpose of matrix, t represents
the time at which the last observation was made, and s reﬁresents any tiﬁe
segment after t and before a new observation is made. At the instant t+s
namely, immediately after a new observation is incorporated at t+s , the

following difference equations are satisfied.

“tes/tts “t+s/t * K*c+s(yt+s "yt+s/t) (1.8)
Vt+s/t+s B Pt+s/t - K*c+sH(JC * S)Pt+s/t (1.7)
yt+S/'t H(t + S)Xt+S/t | (1.8)
K = P HT(t + s)[H(t + s)B HT(t +s) +R 171 (1.9)
tts tts/t t+s/t t+s

where _yt+s/t 1s the predicted observation on the basis of Yt and Kt+s

is the Kalman gain.

The solution of Egs. (1.4) and (1.5) are referred to as the apriori
estimate and the apriori covariance matrix, respectively. Meanwhile, the
solutions of the difference Egs. (1.6) and (1.7) are said to be the posterior
estimate and the posterior covariance matrix, respectively. Once the pos-

A

- terior estimate Xt+s/t+s and the posterior covariance matrix Vt+s/t+s
are obtained, they can be used as initial conditions for the differential
Egs. (1.4) and (1.5), respectively. By integrating these relations forward

until a new observation is obtained, the apriori estimate which is the op-

timal estimate between observations is obtained. In order to initiate this

(1.5)
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procedure, it is necessary to specify ﬁo/o and Vo/o . From the statistics
of a random variable x s R and V are given as R and P , res-
o] o/o o/o o o

pectively.

1.3 Linearization and the Extended Kalman Filter.

As pointed out previously, the linearization'of the dynamic system
and the state-observation rélafionships cannot be avoided, if the original
Kalman-Bucy filter is applied to the orbit determination problem. The de-
tails presented in the subsequent discussion are used to obtain the extended
Kalman filter.

Suppose that the equation of motion is described by the following

nonlinear stochastic differential equation

dXT = f(XT,T)dT +.G(T)dBT > T 2T (1.10)

Eq. (1.10) can be expressed formally as
—L = £(X_,1) + 6(thu_ (1.11)

The discrete nonlinear observations, which are taken at time instants k ,

can be expressed as

Yk = h(Xk) + vy E k = 1,2,3,... | (1.12)

In the above systems, Br’ur’vk and X, @re assumed to have the properties
described in Section 1.2. The o-field generated by the observations Yk is
. — . . . . — |:
denoted by Zt , that is Zt = {Yk,O <k <t} . Substituting XT = X} +ox
and expanding f(XT,T) in Eq. (1.10) about the nominal X? at each point

in time leads to

3



% = &
dXT + de f(XT + XT,T)dT + G(T)dBT
| (1.13)
= f(X¥,T)dT + fX(X¥,T)XTdT + G(T)dBT
where terms involving powers of X higher than the first one are neglected.

For the nominal, the following équation must be satisfied

dX? = 'f(X;,f)dT
or
dx? :
=5 = £, (1.14)

Hence, the state deviation X, can be described by the linear time varying

stochastic differential equation.

dxt = fx(X“,t)xtdt + G(‘t)d.B_t (1.15)

The same procedure can be applied to the state-observation relationships

(1.12), and the final result woull-be expressed as follows

Y = h(Xﬁ) (1.16)

for the nominal and

Vi = hx(Xié)xk + v (1.17)

for the observation deviation. Here hx is the first partial derivative
of h(+*) w.r.t.X .

Combining Egs. (1.15) and (1.17) leads to the same model which was
discussed in the previous Section. Therefore, the Kalman-Bucy linear filter-
ing theory can be applied to the system of Eqs. (1.15) and (1.27). Hencé,

the optimal estimate of state deviation between observations is given by the
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solution of the following linear differential equation

EP
Xt+s/t

L R 1.18
IS fx(Xt+S,t+s)x ( )

t+s/t

At the observation time t + s

Rers/tes = Pees/t T XersVess ™ Teasse) (1.19)
where
Versst © PxXiesRessst (1.20)
Let © = t + s 3 then dt = ds and substituting these in Eq. (1.14) will
yield
= % 1.
= £(x%, ot +5) (1.21)
Combining Egs. (1.18) and (1.21), the following result is obtained
d(x® + % )
t+s t+s/t ~ s
= % + + £ & .
ds f(Xt+s’-t s) x(Xt+s_’t * S)Xt+s/t (1.22)
i X = % 3 ] TN .
Denoting Xt+s/t = Xt+s + gt+s/t , which is an apriori estimate of xt+s

based on Z, > Eq. (1.22) can be approximated as

dXt+s/'t

ds £(X

t+s/t’t + s) (1.23)

From Eqs. (1.21) and (1.23), it follows that the same differential equation
governs the nominal trajectory X¥+s as well as the apriori estimate Xt+s/t
Therefore, selecting the same initial conditions for Egs. (1.21) and (1.23)
will lead to the conclusion that the nominal trajectory and the apriori es-
timate are identical. This situation is satisfied if the current optimal

estimate is chosen as a nominal trajectory. In other words, if the nominal

trajectory is updated with a current optimal estimate, the apriori estimate
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ﬁf+s/t of state Xips ? governed by Eq. (1.18) becomes identically zero,
and hence, Egs. (1.18) and (1.20) are not necessary.. For this situation,
the initial condition for Eq. (1.18) Qould'be zero and, consequently, the
solution becomes identically zero.‘

From the induction above, it follbws that it would be simpler to
linearize the system ébout the current optimal estimate instead of a certain
prescribed nominal trajectory. This situation usually occurs in nature.

For example, when one deals with the motion of a rigid body, it is always
better to stick with the mass center, which is the analogy of the optimal
estimate of position, that is, the mass center is nothing but a conditional
expectation of equivalent point mass. Furthermore, it has been demonstrated,
in the numerical simulations (30,43), that taking the current optimal estimate

as the nominal trajectory leads to better convergence characteristics than

using a certain prescribed nominal.

A

At observation time t + s , the optimal estimate Xt+s/t+s of
Xt+s would be expressed as follows
2 = b + % .
Xt+s/t+s Xt+s Lt+s/tts (1.24)

If the optimal estimate is chosen as a nominal trajectory, then

E3 = 3 )
Xt+s Xt+s/t . Therefore, Eq. (1.24) becomes

Yersrtes T Kersse T Ferssr t KersUiss - Vers/t) (1.25)
Since Rits/t and yt+s/t are both zero for the case where the optimal es-

timate is chosen as a nominal, Eq. (1.25) again becomes

= R N

X't+s/'t+s tis/t Y - YE ) (1.26)

K
t+s(yt+s t+s t+s
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s

after adding and subtracting Y¥+S . It can be easily seen from Eq. (1.16)

that
Y& = h(xE ) = h(%t+s/t) §t+s/t (1.27)
and
Yt+s T Yegs T Y§+S (1.28)
Therefore, Eq. (1.26) finally becomes
2t+s/t+s ) ﬁt+s/£ t Kirs Mg~ ?t+s/t) | (1.29)

The above expression represents the extended Kalman filter (3) and can be

~

summarized as follows; between observations, the apriori estimate Xt+s/t

~

and the apriori conditional covariance matrix Pt+s/t which is distinguished

from the apriori covariance matrix for the linear system, must satisfy the

following ordinary differential equations
dXt+s/t

R ,t + 8) (1.30)

f(xt+s/'t

and

ap
t+s/t F (2 fT(ﬁ

ds = X t+s/t’t+S)Pt+s/t * Pt+s/t X Tt+s/t

respectively. At the observation time t + s , the posterior estimate

~

Xt+s/t+s and the posterior conditional covariance matrix Vt+s/t+s are
determined by the following set of difference equations.
Xt+S/t+S N xt+s/t t Kt+S(Yt+S - Yt+S/t) (1.32)
Vers/trs T Fres/t T KeasPxPeasse Persst (1.33)

;t+s) + G(t+s)Q(t+s)GT(t+s) (1.31)
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Y = % ' (1.34
Yt+s/t h(xt+s/t) _ ( )
K = P hl(R D [h (R )P e ) + R_ 171 (1.35)
t+s t+s/t x tt+s/t ® Tt+s/t7 T t+s/t x Tt+s/t t+s
or
K = ¥ hT(f( YR™1 ' (1.36)
t+s t+s/t+s x “t+s/t’ t+s )

Finally, Egs. (1.30) through (1.35) feature the extended Kalman
filter and they can readily be reduced to the Kalman-Bucy filter when the
systems are linear. Unlike the linear system, the covariance matrices cannot
be precomputed. And, as a matter of fact, they are coupled with the optimal
estimate through coefficients fX and, hence, they are not ordinary covar-

iance matrices, but rather they represent conditional covariance matrices.

1.4 The Problem to be Studied

The problém treated in the subsequent study is that of estimating
the state of a continuous nonlinear dynamical system (1.10), influenced by
Brownian motion, using discrete nonlinear observations (1.12) corrupted by
an independent Gaussian noise sequence. In the previous section, the nonlin-
ear system is linearized and the Kalman-Bucy linear filter theory is applied
to the problem of estimating the state of the linearized system. This tech-
nique is based on the assumption that the state deviation is small so that
the second or higher order terms in the Taylor series expansions can be neg-
lected while retaining the first order terms. Suppose that the system is
highly nonlinear or that the initial uncertainty is relatively large so that
the square of the state deviation as well as the deviation itself is not
negligible. In this_situation, the Kalman-Bucy linear filtering theory must

be abandoned and an effort must be made to develop a new theory which hopefully
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applies to both linear and nonlinear systems.

Up to the present time, no sign of an exact solﬁtion to the nonlin-
ear estimation problem is seen, unless one calculates an infinite number of
moments. Therefore, some sort of an approximate solution is inevitable. With
the possible exception of a scalar system, it is not practically feasible to
include terms of higher order than the second order and, hence, it is desir-
able that the nonlinear estimation technique be defined by using only the
first two moments, namely, the conditional mean and the conditional covari-
ance. In order to do so, the second order terms are included in Taylor series
expansion and a minimum variance criteria is employed to find the conditional
expectation. By definition, the conditional covariance matrix is nothing more
than a conditional mean of the square of the actual estimation errors and,
furthermore, it is clearly understood that the square of the actual estimation
errors is a random variable. Therefore, it is meaningful to interpret the
conditionai covariance matrix as the optimal estimate of the square of the
actual estimation error and to approximate it by the same technique as the
conditional mean is approximated. It is necessary to define a meaningful
criteria for approximating the covariance matrix and this is accomplished by
the use of the propértylof the trace of the matrix. This property is discussed
in Appendix E.

The nonlinear estimation theory developed in this study is applied
to an orbit determination problem. The actual model employed involves the
investigation of the states of an interplanetary space vehicle during the
planetary fly-by and planetary orbiter phases of the mission. In the simu-
lated study, Jupiter is chosen as the main body with the Sun as the perturb-

ing body.
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1.5 Outline of Study

In Chapter 2, the nonlinear mathematical model which will be sfudied
is discussed briefly. On the basis of a Martingale property which is presented
in Appendix D, an'approximate nonlinear estimation algorithm is developed. |
In the process of developing the algorithm, basic sméothing'propertiés des-
cribed in Appendix B are_extensively used to manipulate the lengthy qlgebraic
relations and to simplify the resulting expressions. First, a sequential non-
linear estimate is obtained and a formal limiting process is used to obtain a
continuous nonlinear estimation algorithm. In the limiting process, the con-
cept of white noise as a time derivative of Brownian motion is essential. The
Brownian motiop is treated separately in Appendix C.

Chapter 3 is concerned with the physical problem to'be‘studiedvusing
the nonlinear estimation algorithm developed in Chapter 2. The problem is
that of estimating the state of an interplénetary space vehicle during the
planetary fly-by and planetary orbiter phase of a Jupiter mission. The equa-
tions of motion for the.spacecraft are discussed briefly and expressed as a
set of nonlinear state dynamic equations. Four kinds of observations are con-
sidered. They are range, range-rate, and sun-planet and star-planet angles
as measured from the spacecraft. Finally, computer programs for the nonlin-
ear and the extended Kalman filter equations are described.

In Chapter 4, the results of the numerical simulations are diséussed.
Several nonlinear estimation algorithms are obtained from the modified Gaus?
sian second order filter which is developed in Chapter 2, and the modified
truncated second order filter, by neglecting the second order terms in var-
ious combinations. Each nonlinear filter in conjunction with the extended

Kalman filter is simulated with the problem discussed in Chapter 3 to
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determine thé éffects of the second order terms, i.e., the dynamic second
order term, the observation secona order term, and the Kalman gain compensa-
tionAterm. The Kalman gain compensated filter obtained from the modified
Gaussian secbnd order filter by neglecting the dynamic and the observation
second order terms while retaining the Kalman gain compensation term is shown
to be thg best filter on the basis of the simulétions. The Kalman gain com-
pensated filter is further examined through numerous simulations.

A summary of results and a list of possible extensions to this work

are presented in Chapter 5.



CHAPTER 2
A NONLINEAR ESTIMATION ALGORITHM

2.1 Introduction
The state of the dynamic system is assumed to evolve as the solu-

tion of a nonlinear stochastic differential equation,

dxt = f(xt,t)dt + dst s t > to (2.1)

which is expressed formally as ‘

t >t (2.2)

- = f(xtst) + u't » LN

In the above expression, f(xt’t) is a n-vector and ‘{ut,t > to} is an n-

vector, zero-mean, white Gaussian noise process with

Eluur] = Q8(t - 1) (2.3)

where Q_ is an nxn positive definite matrix for any t . Suppose that ob-

t
servations on the state are taken at discrete instants of time and s mea-
sures the time interval between a certain point in time, say t + s , and t ,
at which the last observation was made. Therefore, s will vary from zero

to the maximum time span between two consecutive observations. This approach

is necessary when observations are not taken regularly.

Let the observations of the state -be of the form

y. = h(xi) Vs i = 1,2,... (2.4)

where ¥ and h are m-vectors, and where {Vi,i = 1,2,.,.} is an m-vec-

tor, zero-mean, Gaussian noise sequence with

A7
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E[Vkvz = Rk6k2 (2.5)
The covariance matrix Rk is an mxm positive definite matrix for any k
It is assumed that {ut,t > to} and {vk} afe statistically independent.
An extension to the continuous observation case can be made by simply replac-
ing A with a white Gaussian.noise Ve . In this case the function Rk
will have an infinite magnitude. Since white noise is formally modeled as

the time derivative of Brownian motion Bt (see Appendix C), it is natural

to relate vi with a white noise vt as follows

\ - B.
v, = =¥ 1 (2.6)
1 S
v = lim Bt+s - Bt - stl | (2.7)
t §+0 s ds |__, B

With these definitions, Rk would be 6f the form

R
Rk - EE (2.8)

which approaches Rté(s) as s goes zero. Denoting

Y, = {yi,i = 1,2,...t} (2.9)
for the o-field generated by yi,i = 1,2,...t , the problem of concern is
that of estimating the state x, of the dynamical system (2.2) on the basis
of Y . In particular, the desired estimate is the minimum variance esti-

t

mate and the solution is well known to be the conditional expectation

EIxt/Yf]. (5). The details are discussed in Appendix F.
"When both the dynamical system and the observations are linear, the
exact solution yields the Kalman-Bucy linear filter. However, an exact solu-

tion does not seem to be realizable with a finite set of moments when the
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models are nonlinear. Therefore, an approximate solution ié inevitable. It
is common pracfice to linearize the system dynamics f£(+) and the observa-
tion-state relationships h(-) , about a specified reference trajectory and
then to apply the Kalman-Bucy filtering theory to the linearized system. 1In
this chapter, an approximate nonlinear filter, which is a modified Gaussiaﬁ
second order filter, is derived by utilizing Martingale properties (Appendix
D) and a Taylor series expansion of f£(¢) and h(+) about the current op-
timal estimate, retaining the second order terms in each expansion.

Regarding the squafe of the actual estimation errors as a collec-
tion of random variables, the conditional covariance is obtained by minimiz-
ing the following risk function (see Appendix E)

A T

R(Vt+s/t+s) = el - V‘t+s/t+s)(vt+s - Vt+s/‘t+s) ] (2.10)
where Vt+s is an nxn matrix and the square of the actual estimation errors
and Vt+s/t+s is the optimal estimate of Vt+s given Yt+s s whlch is the

ey 1 . F v . Y
conditional expectation o s given t+s

2.2 Apriori Estimate Rits/t

Integrating the state dynamic equation (2.2) from t to t + s ,

the state at t + s can be formally expressed as follows

t+s t+s

T ( f(XT,T)dT + f quT (2.11)
t t
t+s
= Xt/t + (xt - xt/t) + [t quT
t+s
A o N 1 ~
+ - = .
Jt {f(XT/t’T) + fX(XT/t’T)(XT Xr/t)'+ 5 fXX(XT/t’T) : PT}dT (2.12)
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The approximate expression (2.12) is obtained by utilizing a Taylor series
expansion of f(+) and truncating at the second order terms. In this expres-
sion t 1is merely a parameter and s is a variable. For the convgnience
of notation, Tt in £f(¢) , fX(') and fxx(-) is neglected unless.other—
wise stated. Knowing that u T >t - is independent of YJc , and (xt - ﬁt/t)

and (xT - ﬁr/t) have zero conditional means, the conditional expectation

which is the desired apriori estimate of x , 1s obtained after

xt+S/t t+sg

taking the conditional expectation of both sides of Eq. (2.12).
t+s

A
S

N _ : . 1 . '
Rive/t = R/t + Jf {f(xr/t) + E-fxx(xr/t) : PT/t}dT (2.13)

Note that f(xT/ ) fx(x ) and fxx(x ) are Yt—measurable and the

T/t T/t
smoothing property 3 (Appendix B) can be applied. The differential equation

t

for = s as a function of s , is readily obtained by differentiating
Eq. (2.13) with respect to s . Since the upper limit of integration is a

function of s , Leibnitz's rule is applied and the result is

dg
t+s/t  _ o 1 . . B
ds o f<xt+s/t) *3 fxx(xt+s/t) ' Pt+s/t (2.14)

The above differential equation is different from that of the extended Kalman
filter through the inclusion of the dynamic second order term fxx(') : §/2

and must be integrated in conjunction with P » from t +to the instant

t+s/t

of a new observation, using % as the initial condition.

t/t
2.3 Apriori Conditional Covariance Matrix Pt+s/t
Subtracting out Eq. (2.13) from Eq. (2.12), the apriori estimation

errors at t + s , is obtained as follows

Xits/t
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Rivs/t = Pres ~ Pres/t
t+s
= - 2.15
(xt Xt/t) + J quT ( )
. t
t+s

+

: . . 1 . . ) 5
Jt {fx(XT/t)(xT - xT[t) * E-fxx(xT/t) ) (PT P'r/‘c)}d‘r

Differentiation of Eq. (2.15) with respect to s yields the following dif-

ferential equation for apriori estimation error =X

t+s/t
ax
t+s/t R - 1 o A '
—_— = = : - +u 2.
ds fx(xt+s/t)xt+s/t * 2 fxx(xt+s/t) (Pt+s Pt+s/t)v t+s (2.16)
By definition
P = % %! (2.17)
t+s _ t+s/t “t+s/t

and differentiating Eq. (2.17) with respect to s , the following relation

is obtained

axy

dPt+s - dxt+s/t >~<T +x t+s/t (2.18)
ds ds t+s/t t+s/t ds :
Substitution of Eq. (2.16) into Eq. (2.18) yields
dp
t+s ~ o1 ” ~ T T
= : - +
ds fx(xt+s/t)Pt+s M E{fxx(xt+s/t) (Pt+s-Pt+s/t)}Xt+s/t ut+sxt+s/t
(2.19)
T ' 1, . _ P T . . T
Pt+sfx(xt+s/t) * Ext+s/t{fxx(xt+s/t)'(Pt+s Pt+s/t)} + Xits/t Y +s

Since t is merely a fixed parameter, the conditional expectation given Yt
and time derivative can be interchanged. Therefore, the following expression
is obtained after taking the conditional expectation of both sides of Eq.

(2.19) and interchanging the conditional expectation and the time derivative.,
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dp _
t+s/t  _ A LT
ds - fx(ﬁt+s/t)Pt+s/t * E[ut+sxt+s/t/Yt]
A T T (2.20)
Pt+s/tfx(2t+s/t) ¥ E[Xt+s/tut+s/Yt]

In the above, the symmetry of the probability density function is assumed and,

hence, the third order moment is taken to be zero. The remaining terms

T -
EfJu
[ t+sxt+s/t/Yt] can be computed as follows

t+s
T _ T T
RLLSTC A S B -l R SONA N [t Elug,qu /Y, ldr
tis (2.21)
. s 1 o 8 T
* Jt B[ut+s{fx(xr/t)xT/t * Efxx(ﬁT/t)'(PT Pr/t)} /Yt]dT
T _ 1
E[ut+sxt+s/t/Y‘t] - Q.Qt+s (2.22)

The factor %- comes from the property of the delta function (6). By the

same token

" T 1
ERa/tteas’ Y] = 5 Qg
and, hence, Eq. (2.20) becomes
ap
t+s/t  _ N S A T,
ds - x(xt+s/t)Pt+s/t * Pt+s/tfx(xt+s/t) * Qt+s (2.23)

which is the desired matrix differential equation for the apriori conditional

covariance matrix P . The initial condition is given as a posterior

t+s/t

conditional covariance matrix V

-

t/t

2.4 Predicted Observation yt+s/t
It is apparent from Eq. (2.4) that the actual observation at t + s

would be
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= hx, )tV (2.24)

yt+s s t+s

Expanding h(+) in Taylor series about the apriori estimate and

Xt+s/t

neglecting the third or higher order terms, the following approximate expres-

sion for i i
Vt+s 1s obtained

) : P + v (2.25)

- e ey ~ 1 A
Vevs - PRoe? PR O% e Y5 R t+s t+s

After taking the conditional expectation of both sides of Eq. (2.25) given

Yt » the predicted observation yt+s/t is obtained.

A

Pt+s/t (2.26)

) + E-h ( )

h( 2 xx% Xt+s/t

yt+s/t xt+s/t

The above relation is different from that of the extended Kalman filter through

A

the second order term in the observation-state relation, i.e., hxx(~) : P/2

The expected errors between actual and predicted observations are
obtained by the difference in Eq. (2.25) and (2.26). Herice, the apriori ob-

servation error (or residual) is given by

A~

) + (P ) + v (2.27)

1
- <7 - t <7 fnd o - - P
Yits ~ Ytrs/t DR st s/t T 7 BaxPevest t+s | t+s/t t+s

2.5 Posterior Estimate and.the Optimal Gain Kt+s

According to the Theorem 2 of Appendix D, the following sequence

Xt+s/1’xt+s/2""’Xt+s/t’xt+s/t+s"" (2.28)
constitute a Martingale and if Z43Z55%gse -+ aTE defined as
17 Pees/10%2 T Pras/2 T Ttes/1°%3 T Fppgsz T Rgg/ot o
(2.29)
2t 7 Ptas/t T Ftes/t-17"7%t+s © Rtes/t4s T Stes/tctcC

then zn's satisfy the following conditions
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E[|zn|] <o E[zn+1/ .,zn] = 0 , n>0 (2.30)

zl’ZQ"'

with probability 1. Further, the terms £ n = 1,2,... of the se-

t+s/n °

quence (2.28) are partial sums of the series Z z - In other words, if
n

z is so determined that the conditions (2.30) are satisfied, the term

t+s

ﬁt+s/t+s of the sequence (2.28), which is the posterior estimate, is uniquely
t+s

determined as a partial sum ) z - Since z, .o must be a function of ob-
n=1

servation Vits ° the following linear approximation

Zrvs © MereYres T Pras (2.31)
is assumed. Where Kt+s and bt+s are random variables which are measur-
able over the o-field generated by the observations Yt . The bias term
bt+S is given as

Pers T KersTersst
from the condition (2.30) which must hold for the zn's . From the series
(2.29) and Eq. (2.31), the posterior estimate ﬁt+s/t+s is expressed, there-

fore, as follows

(2.32)

. . . o
Xt+s/t+s Revs/t T KersWers ™ Tirs/t)

In Eq. (2.32), the nxm matrix Kt+s can be chosen from a family of Yt—mea—
surable functions so that the minimum variance or equivalently the minimum

of the trace of E[Vt+s] is achieved. By definition,



25

T

BV b= EIG o - R s Bigs T Xt+s/t+s) !
- _ s - - 2.33
trEl{x o 7 Riore T Kovs as ers/t)? ( )
(x. - % “K L (y.. -7¥ )]
t+s t+s/t t+s 7 t+s t+s/t

and the optimality condition (Appendix F) for the minimum of the above rela-

tion requires that

T _
E[{(xt+ ) - } /Yt] = 0 (2.34)

s ~ %t+s/t Kt+s(y’c+s - yt+s/t)}{yt+s T Ytt+s/t

Substituting Eq. (2.27) into Eq. (2.34) and using the smoothing property 3 of
Appendix B, the following relation is obtained.

+ &« y:(p  -F
2 XX

T
2 - +
Revs/t) PrasPras/t) Virs! /Y]

h (& )

£ s
[(Xt+s xt+s/t X Tt+s/t

)(xt+s—xt+s/t

1 . N
)(xt =h ( ): (P P )+vt } (2.35)

= E 2 -2 + 2 -
KipeEl{n (R rs Rers/t) t e Bees/t t+s " t+s/t +s

t+s/t

1 ~

( ):(Pt+s—Pt+s/t

. T
xR/t v gt /Y]

{h_(&

+
X Tt+s/t )

)(Xt+s_§t+s/t

If the estimation errors are assumed to be jointly Gaussian, and if it is

assumed further that

T
E[{hxx(ﬁ"ﬁs/’t) ) Pt+s}{hxx(gt+s/t) ’ Pt+s} /Yt]
(2.36)
~ - T
- B{hxx(2t+s/t) Pt+s/t}{hxx(§t+s/t) Pt+s/t}
then, the optimal gain Kt+S is given by
K - b hl (2 Y[h (R ¥ hi(k ) + R
t+s t+s/t X “t+s/t X Tt+s/t7 T t+s/t x Tt+s/t t+s
N X B - T (2.37)
+ = R P R : -1
2 {hxx(xt+s/t) t+s/t}{hxx(xt+s/t) Pt+s/t}]
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The approximation given.in (2.36) leads to the identical results obtained by
Athans et al. (27) for the scalar case but yields a slightly different result

for the vector case. However, in contrast to the result obtained by Athans

et al. the Kalman gain compensation term

1 A - A ~ T
—_— e . P
2 {hxx(xt+s/t) ) Pt+s/t}{hxx(xt+s/t) t+s/t}
: s .- A T
1s always positive definite, as are the terms, hxpt+s/thx and Rt+s of Eq.

(2.37). Hence, the matrix to be inverted in Eq. (2.37) will always be posi-
tive definite, for non-zero Rt+S . In the extended Kalman filter, the op-
timal gain Kt+s can be expressed in terms of either apriori or posterior
conditional covariance matrix, which is given in Eqs. (1.35) and (1.36). How-

ever, this situation is not possible in Eq. (2.37), due to the Kalman gain

compensation term.

A

. iori | i f v
2.6 Apriori Estimate Vt+s/t o t+s
By virtue of random variable Rips ° the posterior estimation error
: —~ 3 X 3 r
Xt+s/t+s 1s an nxl vector random variable, and, hence, Vt+S epresents an

nxn matrix of random variables and its apriori estimate which is the condi-

tional expectation of Vt+s given Yt can be obtained from the definition
- 3 =T
Virs T Rirs/testtes/trs
Vt'f‘S B [X't+S " X't+s/‘t - Kt+8(yt+s - y't'f'S/'t)] (2.38)

A )]T

ess ™ Rers/t ™ KersTiss - Yets/t

Substitution of Eq. (2.27) into Eq. (2.38) yields the following development.
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- 1 ~
= - % - = : (P - P +v,_ .}
Vt+s [{I Kt+shx}xt+s/t Kt+s{2 hxx ( t+s t+s/t) t+s ]
[{1 - K . h }% - K {11{ : (P - B ) + v }]T
[ t+s x° “t+s/t t+s 2 xx t+s t+s/t t+s
or
v = [I-K h P, [I-K h]T
t+s t+s xX° t+s t+s X
-1 ~ T T
- - X - : - P + K
({1 Kt+shx}xt+s/t{2 hxx (Pt+s: t+s/t) Vt+s} t+s
1 T T (2.39)
- = : - P % - K . h
Kt+s{2 hxx ) (Pt+s Pt+s/t) * V‘c+s}x‘c+s/‘c{I tts x}
1 ~ B ~ T, T
= : - = : - + K
Kt_+s{2 hxx'(Pt+s Pt+s/t)+vt+s}{2 hxx (Pt+s Pt+s/t) vt+s} t+s

where the argument of hX and hxx is Xt+s/t

Knowing that v

s is independent of Yt and taking the condi-

tional expectation of both sides of Eq. (2.39) given Yt yields the follow-

ing approximate expression for the apriori estimate of Vt s

+s

A

{I - K h (g )3T

)}P t+s x t+s/t

= {I-K h(

o ) ,
t+s/t t+s x t+s/t’ ) tes/t

1
[-2—{h (

XX Xt+s/t

Hh_ (g )

) XX t+s/t

K P 3
t+s t+s/t t+s/t t+s Kt+s

2.7 Posterior Conditional Covariance Matrix V
t+s/t+s

As pointed out in the previous section, Vt+s is a collection of

A

random variables. The conditional expectation V given Y is a

t+s/t+s t+s

posterior estimate of Vt+s and can be determined by estimating each element

of V in terms of the linear combination of the apriori estimate V
t+s t+s/t

and a new observation Vit * The above argument is based on the Martingale

4 - -
t+s/1° t+s/2° ’Vt+s/t’ ?

A

properties of the sequence V and, hence, the
same reasoning as that used in regard to Eq. (2.31) can be applied. Regard-

ing Vt+s as an n?x1 vector instead of nxn matrix, the estimation problem
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can be stated as follows: determine n2xm matrix Bt+S of the linear com-

bination

~ ~

Vess/tes Virs/e T Bt+s(yt+s - yt+s/t) (2.41)

such that the risk (see Appendix E)

) (v i )7 (2.42) -

R(B = E - ¥ _
( ) tr [(Vt+ Vt+s/t+s t+s Vt+s/t+s

t+s

is minimized. Substituting Eq. (2.41) into Eq. (2.42) leads to the following

result
R(B o) = ®EMV . - Versst ~ BrasTews ™ Yewgye)!
. T (2.43)
{Vt+s - Vt+s/t - Bt+s(yt+s - yt+s/t)} ]

The optimality condition for the minimum of R is given by the following or-

thogonality condition (see Appendix F)

B s Vs /e Bras Tens ™ Teae/e) Wiss = Tiug /t} Ml =0 (2.44)

E[(v, -V Wy

t+s tts/t /Y1 (2.u5)

t+s t+s/t) /v.lo= Bt+sE[(yt+s_yt+s/t)(yt+s—?t+s/t

By the same argument as that used with regard to Egs. (2.34), (2.35) and

(2.36) the right hand side (R.H.S.) of Eq. (2.45) is approximated as follows

ReHSe = B I R P e/t Rersse) T Ry
L | A o (2.16)
+ 5-{hxx(xt+s/t) : t+s/t}{hxx(xt+s/t) : Pt+s/t} ]
Knowing that
BV, 0y, -9.. 0001 = o (2.47)
t+s/tVt+s T Yt+s/t t4 = .

~ the left hand side (L.H.S.) of Eq. (2.45) becomes
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T
L.H.S. = B[Vt (y -3 ) /Yt] (2.48)

+s “t+s t+s/t

After substitution of Eqs. (2.27) and (2.39) into Eq. (2.48), it can be easily
seen that all of the terms in Eq. (2.48) are of the fourth or higher order |
moments, under the assumption that the probability density functions of es-
timation errors are jointly Gaussian. Therefore, the optimal gain Bt+s is
given as the ratio of the fourth to the second order moments and is neglected.

Hence,

B = 0 , (2.49)

With this assumption, Eq. (2.41) leads to

Vt+s/t+s = Vt+s/t (2.50)

It is interesting to note that both the posterior and the apriori estimation
errors are independent of observations available for the linear model and,

hence, the conditioning on the covariance matrices becomes unconditional.

A A

Therefore, there are no distinctions between V and V

t+s/t+s t+s/t ° Al-

though Eq. (2.50) shows that V is closely approximated by V

t+s/t+s t+s/t °

these are conceptually two different quantities. In the linear filtering

theory, these become identical and there is no distinction between them.

Since V is related to the apriori conditional covariance

t+s/t

through Eq. (2.40), the posterior conditional covariance matrix

A

i P
matrix t4s/t

A

Vt+s/t+s can be expressed in terms of ?t+s/t . From Eq. (2.50)
PN ~ . n ~ N T
= \" : = - -
vt+s/t+s t+s/t {1 K‘t+sl'1:~<(xt+s/1:)}Pt+s/‘c{I Kt+shx(xt+s/t)}
‘ (2.51)
oK Emog . )P M2 ,) B 3T+ r KT
t+s "2 XX t+s/t t+s/t XX Tt+s/t t+s/t t+s” t+s
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N A 2 A T T
= - % P - % K
Vits/tes Pirsst ™ BeasPxPors/t Trrs/t ~ Fras/tx Rersst ) Keas
2 2 R 2.52
* Kt+s[hx(xt+s/t)Pt+s/thx(xt+s/t) * Rt+s ( )
1‘ ‘33 - B '3 - D T T
¥ 5'{hxx(xt+s/t) ' Pt+s/t}{hxx(xt+s/t) ) Pt+s/t} ]Kt+s

Substitution of Eq. (2.36) inté Eq. (2.52) yields the following relationships

A A~

= P - K. . h (%

Vt+s/t+s t+s/t tt+s x 1:+s/‘c)P (2.53)

t+s/t

The above relation is used to update the apriori conditional covariance matrix

A

Pt+s/t to the posterior conditional covariance matrlx V after a new

t+s/t+s

observation Yirs is processed. Once v is obtained, it can be used

t+s/t+s

as an initial condition for the integration of Eq. (2.23) from t + s to the

instant of a new observation. Finally, the procedures required to compute

the posterior estimate Xt+s/t+s can be summarized as follows:
das
t+s/t X 1 o A
—_— = = : P .
ds FRust) P2 TaxPrrsse?) F Prrssn (2.54)
ap
t+s/t  _ A 2 ~ T,.
ds N fx(x’c+s/t)Pt+s/t * Pt+s/tfx(xt+s/t) + Qt+s (2.55)
N = h(R )y + 2 h (2 ) : P (2.56)
t+s/t t+s/t 2 xx Tt+s/t t+s/t
K = P nhl(sk )[h (% )B nl (g ) + R
t+s t+s/t x Tt+s/t t+s/t’ t+s/t x “t+s/t t+s
1. (2.57)
* 5-{hxx(xt+s/t) t+s/t}{hxx(xt+s/t) t+s/t}]
2t+s/t+s - xt+s/t * Kt+s[yt+s - yt+s/t] (2.58)
Ve = B - ;
t+s/t+s t+s/t Kt+shx(ﬁt+s/t)Pt+s/t (2.59)

In order to start the computation, ﬁo/o and Go/o are required and they

are given by
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%

o/o E[xo/Yo] = E[xo] (2.60)

' = P (2.61)
o/o o

where PO is given as the covariance of the random variablé' Xy

Depending on the particular problem, it may be possible to neglect
either the dynamic or the observation second order term. This might be the
case when the state dynamics are relatively smooth while the state-observa-

tion relationships are highly nonlinear or vice versa.

2.8 Computational Algorithm

of x by

The algorithm for computing the estimate xt+s/t+s s

processing each data point sequentially, can be summarized as follows:

1. Given ﬁt/t and Vt/t
2. Compute Xt+s/t and Pt+s/t by integrating Eq. (2.54) and
(2.55) with the given initial conditions & and V

t/t t/t

until a new observation Yits is made at t + s .

3. Determine Virs/t and Kt+s using Egs. (2.56) and (2.57),
respectively.

4. Compute Xt+s/t+s Vt+s/t+s by updating xt+s/t and
Pt+s/t through Eq. (2.58) and (2.59), respectively.

5. Given Xt+s/t+s and Vt+s/t+s » the steps 2 throggh 4 can be
repeated.

2.9 Continuous Second Order Filter
An approximate filter for the case of continuous observation may

be obtained by passing to a formal limit. In doing so, Q of the dynamic

t+s

state noise and Rt+S of the observation noise have to be replaced by Qts
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and Rt/s » respectively. This comes from the property of white noise re-
garded as a time derivative of Brownian motion (see Appendix C). For an in-

finitesimal observation interval s , it follows that

& = S A i ~ ~
Revsst - Ryt Sf(xt/t) t 3 fxx(xt/t) Vt/t (2.62)
. L s A . A T |

Pt+s/t = Vt/t + SfX(xt/t)Vt/t + SVt/th(xt/t) + th (2.63)
K = P h (% )R-1 | (2.64)
t+s t+s/t x Tt+s/tt

Utilizing Egs. (2.56), (2.58), (2.53), (2.62), (2.63) and (2.64) and passing
to a formal limit, the following continuous second order filter is obtained,

as s goes to zero.

A& _ lim “t4s/t+s _ t/t

dt S0 S

g ... 1 g 1 4

I ° () + 5 fXX(x) : V + K[y -~ h(g) > hxx(x) : V] (2.65)
K = th(i)R-l , (2.66)
@ _ lim Vers/tes ~ Vst

dt s*0 s

av PN, N A

aT_E- = fX(X)V + VfX(X) + Q th(X)R hX(X)V (2.67)

Note that the optimal gain K for the continuous filter is not the limit of

the optimal gain Kt+s given in Eq. (2.6u4).

~—\



CHAPTER 3
DESCRIPTION OF THE ORBIT DETERMINATION PROBLEM

3.1 Introduction

In order to.compare the performance of the extended Kalman filter
and the various. forms of the nonlinear second order filters developed in
Chapter 2, the methods are compared in a simulated study of a realistic or-
bit determination problem. The problem considered is that of estimating the
state of an interplanetary space vehicle during the orbiting and planetary
fly-by stages of a Jupiter exploration mission. The reason for choosing this
problem is that considerable attention has been given to the exploration of
deep space and the reconnaissance of Jupiter is regarded as an important
scientific objective. However, the past Jupiter encounter missions are of
comparable significance and those missions are made practical by utilizing
the powerful trajectory shaping capabilities of Jupiter's gravitational field.
One such mission, the so-called "Grand Tour", involves successive fly-bys
of the planets, Jupiter, Saturn, Uranus, and Neptune. The Grand Tour is the
subject of considerable current interest, since a mission opportunity occurs
in the last half of the 1970's and will not reoccur for another 179 years.

A critical problem in the design of a space vehicle to perform a
deep space mission such as the Grand Tour is the accurate determination of
the expected trajectory which is the basic knowledge required for the guidance
correction. Because of numerous sources of error, the true trajectory is
never known to us. A major contribution to those errors, access during the
encounter trajectory, due to imperfect pre-encounter guidance corrections

which result from pre-encounter orbit determination errors. In regard to

33
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this situation, it is interesting to see how the nonlinear estimation proce-

dures perform when compared with the extended Kalman filter.

3.2 Equations of Motion
The motion of a space probe relative to a given planet is closely

approximated by the solution of the following vector stochastic differential

equations
. PR
r = -y o3 Mg [;g-— ;34 + u (3.1)
p 't

where u and Wy are the gravitational constants of the target planet and
the Sun, respectively, and 4 is a vector of Gaussian process noise and

where r is the position vector of the space probe relative to the target
planet, r_ is the position of the target planet relative to the Sun, and

t

rp = v+ ft is the position of the probe relative to the Sun.
Eq. (3.1) can be reduced to a system of first order differential

equations by the following transformation

<1

o=
(3.2)

v
In a cartesian coordinate system centered at the target planet, the equations
of motion can be expressed in component forms as
X = U
Y = v

(3.3)

DN
1
=
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Figure 1.
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X +X X
0 = cp 2oy e - Y 4w (3.3)
3 s v r3 X
P t
Y +Y Y
ANCETIR ST S T
3 s r 3 y
P t
+
. Z Zt ZAZt 4
e R =
P

The heliocentric position components of the target planet can be expressed as

= X& +

Xt t bx
= Y% +

YJC ¥ by
= %+

Zt Zt bz

where X% ’ Y? and Zﬁ are the components of the heliocentric position vec-
tors obtained from the planetary ephemeris and bX ’ by and bZ are com-
ponents of bias in the position vector due to the errors in the planetary
ephemeris. The components of the planetary position bias are assumed to be
constant over the time period of interest. The position vector of target

planet changes very slowly and this assumption appears to be reasonable.

3.3 Augmented State Vector

Since the uncertainty in the position of the outer planets (Jupiter
in this study) is assumed to be an influential error source, the planetary
bias vector bX s by and bZ are assumed to be unknown parameters and are
.estimated. To achieve this objective, the original state vector given by Eq.
(3.3) is expanded to include bx . by and bZ and the augmented state is

defined as
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T
X = [XsYazauaVaw:bxsby’bz]

The augmented state vector is governed by the (9x1) vector differential equa-

tion
x = f(x,t) +u (3.5)
where
fl = U . f2 = \ s f3 = W
X + X X
f =~ux—u[——3----Jc -=3] tu
L r3 s r r3
P t
v Y +Y Yt
fs = - F‘; - ]JS [-——r—g-—— - F‘] + U.y (3-6)
p t
+
PN T o S
6 3 s T 3
P t
f7 = f8 = f9 = 0

3.4 State-Observation Relationships

There are four types of observations considered: range (p) ,
range-rate (p) , sun-planet angle (a) , and star-planet angle (B)
The first two of these are Earth-~based while the other two are onboard obser-
vations. Any combination of the above four observations can be processed

at any time interval. Such a procedure is necessary if the characteristics

of each type of observation are to be determined.

‘1. The range measurement is given by

o = ()% v, (3.7)
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is the random error in the range measurements and where

where vp
p = fp - T, .
In cartesian components
o= LK, - X2+ (- Y2+ (7 - 23212 4 v (3.8)
where XS s YS and Zs ére the heliocentric position coordinates of the
Yp and Zp are the heliocentric position coor-

tracking station, and X_ ,

dinates of the probe.
2. Range-rate observation
Differentiation of Eq. (3.7) with respect to time yields the range-

rate observation given by
(3.9)

In the heliocentric cartesian

is the random observation error.

where v*
p
coordinate system, the expression becomes
(3.10)

[(xp - XS)(XP - Xs) + (Yp - YS)(YP - YS) + (zp - ZS)(Zp - ZS)]/p + v

Sun-planet angle
o , defined as the smaller angle be-

3.
The onboard angle measurement
tween the probe—planef line and the probe-sun line, is given by
RS- ‘
a& = cos [—;E——BJ + v (3.11)
p

is the observation error.
Since rp = Et + r , Eq. (3.11) can be written as
Y er +1

where Vo
(3.12)

2

= cos”! [
rr
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which in component form becomes

o = cos~! [(XXt + YYt t 2zt rz)/rfp] tv,o ' (3.13)
where
r = [X2 +¥2 + g2]Y/?
and
v, = [Xs + Yé + le)]l/2

4. Star-planet angle
The last star-planet angle measurement B , defined as the smaller
angle between the probe-planet line and the line from the probe to a reference

star, is given by

(3.14)

where VB is the random observation error and S is a unit vector in the
direction of the reference star. The star is assumed to be at an infinite
distance so that S is a constant vector. Since the inclination of Earth
and Jupiter are nearly zero, it follows that Earth, Jupiter and the space
probe lie in very nearly the same plane. Hence; it is desirable to use a
star which is not in this plane as a reference star to obtain information
about the out-of-plane motion. Star-planet angle measurement can be ex-

pressed in cartesian components as

B = cos~! [-(xs + YSy + ZSZ)/r] + Vg (3.15)

where SX . Sy and SZ are the direction cosines of the reference star

direction.
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3.5 Motion of the Tracking Station

Range and range-rate observations are taken at a tracking station
on the Earth and the heliocentric position vector of the tracking station
is given by

r = r +R (3.16)

where Ee is the heliocentric position of the Earth and R is the geocen-

tric position of the tracking station. The vector R is computed as a

function of time from the relationship

[R cos § cos a (t;
s s

R = [THR cos Gs sin as(t) (3.17)

R sin §

where o is the right ascension of the tracking station,
§_ is the declination (latitude) of the tracking station,
R 1is the magnitude of the vector R and the radial distance of the

tracking station from the Earth's center,

and
1 0 0
T = o0 cos ¢ sin €
0 ~-sin € cos €

is the rotational matrix which transforms the coordinates from an equatorial

to an ecliptic coordinate system which is chosen to be the heliocentric sys-
tem. The argument € 1is the obliquity of the ecliptic. With the assumption
that the Earth's rotation is uniform, the right ascension of the tracking

station can be expressed as



% Tracking Station

‘\v- Equatorial Plane

\\\\\_.Ecliptic Plane

Figure 4. Tracking Station Geometry
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a (t) = a(t)) + &S C (- t)

Differentiation of Eq. (3.16) with respect to the time yields the heliocen-

tric velocity of the tracking station.

™ o i b
-¢_ R cos & sin a _(t)
s s s
roo= v+ [T1] ag R cos §_ cos as(t) (3.18)

The zenith angle ¢ of the probe with respect to the tracking station is

given by

cos ¢ = RR‘; o (3.19)

The probe is assumed to be visible from the tracking station if cos ¢ is

positive.

3.6 Simulation of Errors

Each component of the noise in the equations of motion (3.1) and
observation-state relations is modeled as a normally distributed scalar ran-
dom variable with zero mean and known variance. The noises are simulated
by sampling at random from a standard normal distribution function (zero
mean and unit variance) and then scaling the sampled number by the given
standard deviation.

The normal density function of the random variable & 1is given by

- 2 V
exp [- 55?755?1—] : (3.20)

£(g) = ——
V2mo

where m and ¢ are the mean and the standard deviation, respectively. Eq.

(3.20) can be written in terms of the standard normal distribution function
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Z Cz
I exp(- §—Dd§ (3.21)

by the transformation

¢ = & e : (3.22)

For the random variable of zero mean
£ = ot (3.23)

The inverse of Eq. (3.21) can be approximated by the curve fit equation (40)
2
Co + C1F + C2F

- Z 3
1+ dlf + dQP + d3F

(3.24)
[2n(F-2)]2

—
h

where the coefficients g and di have the following values

CO = 2.515517 ' d1 = 1.432788
C1 = 0.802853 d2 = 0.189269
C3 = 0.010328 - d3 = 0.001308

Sampling of the standard normal distribution is accomplished by first samp-
ling at random from a uniform distribution to obtain a value for F(0 <F< 1)
and then computing the standard normal random number 2 from Eq. (3.24).

The simulated noise is_?hen computed as the product of the sampled value 2

of the standard normal random variable’' r ' and the standard deviation 0 by

Eq. (3.23).

Observational data are simulated by adding random numbers & which
are generated in the manner described above to the observation value computed

from the true state and state-observation relationships discussed in Section

3.4, i.e.

A
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Y = Y + Vv (3.25)
true

Noise in the equation of motion is simulated in the same way as
above and then added to the equation of motion at discrete points of time

which correspond to the integration step.

3.7 Computer Program Description

The program NONSTEP (NONlinear STate, Estimation Program) is dev-
eloped for comparison of the extended Kalman filter and the nonlinear es-
timation algorithms by applying each to the study of an interplanetary orbit
determination problem. Special emphasis is given to the planetary fly-by
mode although the planetary orbiter is considered also.

The program was written in FORTRAN IV for the CDC 6600 computer
system at The University of Texas at Austin. Since this computer has a single
precision word length of sixty bits, single precision arithmetic was consid-
ered to be adeuate for most caiculations. The initial frame of the program
was founded on the existing program STEP (STate EStimation Program) develdped
by Jones (28) at The University of Texas at Austin.

The three basic functions of the program, i.e., simulation, estima-
tion, and evaluation, are conducted sequentially according to a schedule
specified in the input data. The program NONSTEP has a capability for carry-

ing out the nonlinear estimation algorithms as well as the extended Kalman

filter, depending on the input data IFILTER. If IFILTER = 1, the extended
Kalman filter is carried out. If IFILTER = 2, the nonlinear filter is
implemented and, finally, if IFILTER = 3, the nonlinear estimation proce-

dure is first carried out and then, with the same input data and random

noises, the extended Kalman filter is carried out. With this latter option,
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@ direct comparison of the linear and nonlinear algorithms can be made.

In order to reduce the storage space for compilation, the program
NONSTEP employs OVERLAY. The main OVERLAY(0,0) controls the overall program.
The OVERLAY(1,0) conducts all the plots of the output.data for the case of

IFILTER 1 or 2. The OVERLAY(2,0) does the same thing for the case of

IFTILTER 3. The OVERLAY(3,0) conducts all of the calculations involved in

simulations, estimations, and evaluations and transfers the output data to a
magnetic tape for the plot of OVERLAY(1,0) or OVERLAY(2,0).

In conjunction with the apriori conditional covariance matrix, the
true trajectory and apriori estimate are generated simultaneously through
parallel numerical integrations of the apriori estimate and the apriori con-
ditional covariance matrix. A general purpose numerical integration subrou-
tine is uséd to simultaneously integrate the differential equations. The
routine consists of a Fourth Order Adams predictor-corrector scheme with a

Runge-Kutta starter. Although the integration is carried out in single-pre-

.cision, the dependent variables are carried in double-precision to minimize
round-off errors.
Observational data are simulated by generating random noise and
superimposing it on the true observation computed from the true state.
A simplified block diagram of the computational logic is shown in

Fig. 5.



Y

Compute
True State

Set Initial
Conditions

!

!

Numerical
Integrator

'

Compute

X P
Xt+s/t > Tt+s/t

Is
Observation
Time
?

No

Figure 5.

Yes

Planetary
Ephemerides

Compute Tracking
Station Position
and Velocity

No

Probe Visible (»

Noise
Generator

Compute True gompute
and Predicted [ Simulated
Observation Observation
Compute Compute
§t+ Jt+ lt————— | Observation
G s s Residual
t+s/t+s

Block Diagram of Computational Logic

Lh



CHAPTER U4
DISCUSSION OF NUMERICAL RESULTS

The purpose of this chapter is to determine the characteristics of

second order filters on the basis of a numerically simulated study. There

are two basic classes of second order filters to be examined. The first is
the modified Gaussian second order (MGSO) filter and the other is the modi-
fied truncated second order (MTSO) filter. The basic difference between

these two filters is that the Kalman gain compensation (KGS) term enters with
a plus sign of one-half in the first filter and with a minus sign of one-
fourth in the later filter. Both filters include a dynamic second order (DSO)
term, (fxx : P)/2 , in the dynamic equation (2.54) and an observation second

order (0SO) term, (hXx : P)/2 , in the predicted observation equation (2.56).

4.1 Various Simplified Forms of Second Order Noniinear Filters

Although the modified Gaussian second order filter and the modified
truncated second order filter are developed using a model in which both state
and the observation equations are nonlinear, there is a possibility that the
actual problem will consist of a highly nininear dynamic equation and a rela-
tively linear observation or vice versa. In this situation, the second order
term in the relatively linear relation may be neglected, and, hence, several
possible simplified nonlinear estimation algorithms can be obtained, depend-
ing on the presence of the dynamic second order term, observation second
order term, and the Kalman gain compensation term in various combinations.
The resulting filters are tabulated in Table 1. The Filters 1, 8 and 9 of
Table 1 correspond to the MGSO Filter, the MTSO Filter and the extended

Kalman (EK) Filter, respectively. The Filter U4 is specifically referred to

L8
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as the Kalman Gain Compensated (KGC) Filter. The performance of each of the
Filters, 1 through 8, is studied through numerical simulations and coméared
with the EK Filfer whiﬁh is‘the most popular filter at present time. The
nonlinear filter is first executed with the input data given in Tabies 5
through 9, and then the EK Filter is éxecuted under the same conditions.
The same sequence of random numberé is used fo simulate the state noises as
well as the observation noise in both filters. The conclusions reached in
this investigation are based on the results of several hundred simulations.
The results obtained in eighteen of these simulations are presented in this
report. These results obtained in these cases are representative of the

results obtained in the remaining studies.



TABLE 1. SIMPLIFIED NONLINEAR FILTERS

‘DSO = . P - : - : »
(fxx ‘c+s/*c)/2 030 (hxx ‘c+s/t)/2 KGCT [hxx t+s/t][ XX Pt+s/t
(MGSO filter)
FTLTER 1 YES YES KGCT/?2
FILTER 2 NO YES KGCT/?2
FILTER 3 YES YES NO
(KGC filter) K
FILTER &4 - NO NO KGCT/2
FILTER 5 NO YES NO
FILTER 6 NO YES ~KGCT /4
FILTER 7 NO NO ' ~KGCT /4
(MTSO. filter) ——
FILTER 8 YES YES -
(EK filter) ' .
FILTER 9 NO NO NO

0S
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4.2 The Nominal Trajectory and Error Sources

The nominal trajectories are.generated by integrating the equations
of motion (3.1) with dynamic state noise set equal to zero. In other words,:
the random noise u 1is simply set to zero. Considering the possibilities
of applying the nonlinear algorithm to the problems of é near—Earfh or lunar
satellite, Mariner and Viking missions, simulations are conducted not only
for a hypobolic orbit, but also for an elliptic orbit. The nominal trajec-
tory of the elliptic orbit is shown in Fig. 6 and the'hyperbplic orbit in
Fig. 7. The periapsis and apoapsis for the elliptic orbit occur at about
4.6 and 20 days, respectively. The periapsis encounter in the hyperbolic
orbit occurs at about 12.7 days.

As seen in Figs. 6 and 7, the dynamic nonlinearity in the elliptic
orbit is very much concentrated near periapsis and aﬁoapéis, but it is well
distributed over the entire trajectory when compared with the hypobolic or--
bit. In the hypobolic orbit, the dynamic nonlinearity is concentrated almost
entirely near the perigee, and the pre- and post-encounter trajectories ap-
pear to be straight lines.

.The initial conditions for the hypobolic and elliptic orbits are
obtained from the nominal Grand Tour mission trajectory with Earth launch
date and Jupiter encounter (28). For the elliptic orbit, the velocity com-
ponents are reduced so that it yields an elliptic orbit with a p;gper period
of 30 days. The nominal trajectory initial conditions are given in Tablé 2
and the orbital elements of Jupiter and Earth are listed in Table 3.

The true trajectory (or state) is generated by adding a vector
Gaussian random forcing term u described in Section 3.6, to the equations

of motion (3.1).
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The actﬁal observations are simulated with the data given in Table
4 by using the following procedure:
1. Compute the nominal observation through the state-observation
relationship with the true trajectory obtained as described above.
2. Gaussian random noise 1s generated as described in éection 3.6
and added to the nominal observation.
The standard deviation OQ of the dynamic state noise u and
Or of observation noise v are given in Tables 5 through 9 according to
the simglations. Since it is common practice to employ an adequate % for the
dynamic noise u , even though there Is no dynamic noise assuﬁed, two values
of o are used. © is designated for thebtrue trajectory and OQA is

Q -QT v
adopted for the estimate of the state.



TABLE 2.

JULIAN DATE AND TRUE STATES AT INITIAL TIME

X COMPONENT

Y COMPONENT

Z - COMPONENT

= _
o | FOSITION 2.4700434082x106 -1.1308760230%107 4,7435578173%x10°
O o (KM)
= 0
a5
23 a | VELOCITY
§ g | ta/see) -0.7804113160 9.1873486000 -0.4730900710
fasi
o | BIAS
S| (k) 0 0 0
P I
z (iaiT ON 1.5797023900x106 -2.6660243500%106 4.0483584600%10"
9.8 -
HE T | VELOCITY
588 | /sE0) 0.9227130460 5.9467835000 -0.2763467830
—~H O : )
d n
BIAS
21 0 0 0

€9



TABLE 3. PLANET ORBIT ELEMENTS

EARTH

JUPITER

SEMI-MAJOR AXIS, a-, (AU)

0.99999984924

5.2080609002

ECCENTRICITY, e ,

1.671330920x10"2

4,7439441265%10"2

INCLINATION i (DEG)

3.8534133187x10~3

1.3066472679

RIGHT ASCENSION OF
ASCENDING NODE, @ , (DEG)

1.7545297300%x102

9.9979271397x10!

ARGUMENT OF PERIAPSIS w , (DEG)

-7.3304115746x101

-8.5087384560%10"

MEAN ANOMALY M , (DEG)

1.7589871397x102

1.1659075977x102

EPOCH OF ELEMENTS (JD) 2.44L0555000%106 2.4440555000%10°
SUN'S GRAVITATIONAL CONSTANT (km3/sec?) 1.3271251802x10%1
'JUPITER'S GRAVITATIONAL CONSTANT (km3/sec2) 1.2671206804x108

hS



TABLE 4. OBSERVATIONAL DATA

REFERENCE N . .
STAR
DIRECTION
COSINE 0 -0.24192 ~0.9703
TRACKING GEOCENTR%Em?ISTANCE RIGHfDéngNSION LA¥§E2?B
STATION
LOCATION 6376.29673 151.43676 21.99133

OBLIQUITY OF ECLIPTIC

(DEG)

EARTH'S ROTATION RATE

(DEG/DAY)

23.442

360

qs
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Figure 6.
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4.3 Characteristics of the Filters

The results of Simulations 1 through 8 are presented primarily for
the purpose of describing the characteristics of the filter algorithms in
Table 1.

For each simulation, position and velocity estimation errors are
plotted and they are compared with results obtained with the extended Kalman
(EK) filter which is filter 9 in Table 1. In addition to the estimation er-
rors, the conditional variances and the oﬁservation residual which is defined
as the difference between the actual observation and the predicted observa-
tion are shéwn. Unlesé stated otherwise, all figures are obtained by con-
necting every third data point with straight lines. There are thirty data.
points between two adjacent symbols. The main reason for sampling every
third data point is due to the difficulty of tracing the original plot ob-
tained from the Calcomp computer ploter when every data point is plotted.

In this study, the planetary bias is approximated as a constant
parameter and its value is estimated. But, the estimation errors and the
conditional variances remain virtualiy constant with the onboard angle mea-
surements during the time period of interest. Furthermore, the difference
between results obtained with the nonlinear filters and the EK Filter are
negligible. Consequently, the estimation errors and conditional variances
corrésponding to the planetary bias are not presented in this report.

Since the nonlinear filters are compared with the EK filter, the
estimation errors and.conditional variances for the EK filter in the Simula-
tions 1 through 8 should be identical. However, the actual figures are not
identical because of scale factors.

The EK filter performs adequately up to three days and thereafter
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becomes unstable. Actually, fight after the three day period, the éondition—
al variancés decrease drastically and the estimation errors take several sharp
oscillatqry spikes during a short period of time while drifting away from
zero. The sharp decrease in conditional variance is attributed to the fact
that hxﬁhz dominates R in Eq. (1;35) and, hence, the negative term in

Eq. (1.33) will be quite large. The position and velocity estimation errors
and the conditional variances for the EK Filter are shown in Figs. 8-a, 8-b,
10-c, and 10-4.

Immediately after encounter (12.7 days), the velocity estimation
errors remain at a relatively constant level and, hence, the position esti-
mation errors grow linearly, in an unbounded manner, and divergences occur
eventually. The velocity estimation errors become extremely unstable shortly
after encounter aﬁd the magnitude oscillates several times with sharp spikes.
This phenomena is not seen in the figures shown here because of the fact
that every third data point, instead of every data point, is plotted. In
particular, the velocity components of the conditional variances are very
small after encounter, and the filter becomes saturated. Therefore, the ob-
servations taken after encounter cannot improve the estimate very much. The
characteristic of poor estimation after encounter is an indication of the
importance of the pre-encounter navigation.

Figs. 8-a and 8-b show the position and velocity estimation errors
for the Simulation 1 which compares fhe Filter 1 (or MGSO Filter) and the EK
Filter. Both Filters perform adequately up to three days and there are no
significant differences between them. After three days, the EK Filter be-
comes unstable. However, the MGSO Filter performs properly up to encounter.

Both Filters diverge after encounter.
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It is interesting to notice that the MGSO Filter obtains a more
accurate estimate of the Y and Z components and less accurate estimate
of the X components after encounter than the EK Filter does.

Although the corresponding conditional variances are not specifi-
cally shown.here, they are alhost identical td the ones given in Figs. 11;d
and 11—3. It is interesting to note that the conditional variances for the
MGSO Filter are considerably larger than those of the EK Filter especially
in the region from three to thirteen days, during which the MGSO Filter es-
timates surprisingly better than the EK Filter.

Figs. 9-a and 9-b show the position and velocity estimation errors
for Simulation 2 which compéres Filter 2 and the EK Filter. Filter 2 per-
forms considerably better than fhé EK Filter throughout the entire region.
For future discussion the oscillations around encounter are emphasized here.
The conditional variances are identical to the one shown in Figs; 11-d and
11-e, which also correspond to Simulations 1 and 4.

From Table 1, it can be seen that the only difference between Fil-
ter 1 (or MGSO Filter) and Filter 2 is that the dynamic second order (DSO)
term is dropped in Filter 2. Therefore, the comparison of Filter 1 and Fil-
ter 2 shows the effect of DSO term. As seen in Figs. 8-a, 8-b, 9-a, and 9-b,
the effect of DSO term has a significant effect after encounter. By dropping
the DSO term from the MGSO Filter (Filter 1), a far better estimate is ob-
tained.

A number of simulations indicate that the DSO term is very sensi-
tive to the initial covariance matrix. For the larger values of the initial
variances, less satisfactory estimates are obtained. The simulations indi-

cate that the MGSO Filter diverges while the EK Filter yields a convergent



61

estimate whenever large iﬁifial variances are used with relatively large
state noise OQ . For small initial variances and small state noise OQ s
the differences between the two Filters MGSO and EK Filters are negligible.
This implies that none of the DSO, 0SO and KGC terms are important. Appa-
rehtly, most of the orbit determination problems which are not influenced.
by a state noise u fall in this category and the differences between the
EK Filter and the MGSO Filter are negligible. However, there appears to be
a range in which the initial variances can be sé chosen that the effect of
DSO term improves the filter performance. But, it may not be easy to select
such an initial covariance matrix in a complex multi—dimensional problem,
because the chosen set of initial covariance matrix may very well cause the
DSO term to affect the filter in such a way that the estimate of some com-
ponents can be improved while the estimates of other components is degraded.
An example of this situafion is shown in Figs. 8-a and 8-b.

Usually, if the EK Filter converges, i.e., if the conditional var-
iances femain small, the MGSO Filter acts like the EK Filter. This is due
to the fact that the effect of the DSO term can be overridden by the small
variances associated with the observations. In contrast, if the covariance
reduction caused.by the observations cannot override the effect of the DSO
term, which will occur when the initial variances and dynamic state noise
are large, then the MGSO Filter diverges because of the DSO term even though
the EK Filter converges. A large conditional variance allows the estimate to
depart from the true trajectory because of the DSO term and cause a bad pre-
dicted observation and, consequently, large observation residual which will
lead to filter instability and divergence.

Figs. 11-b and 11-c show the estimation errors for Simulation
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4 which compares Filter 4 with the EK Filter. As seen in Table 1, filter 4
includes only the KGC term and excludes the DSO and 0SO terms. Filter 4 is
referred to as the Kalman Gain Compensated (KGC) Filter. -

The comparison of the filter performance with Filter 2 will show
clearly the effect of the 0SO term and the comparison with the EK Filter
reflects the effects of the KGC term. From Figs. 11-b and 11-c, it is seen
that the Filter 4 (KGC Filter) estimafes show excellent agreement with the
true trajectory throughout the entire region. Both the KGC Filter and the
EK Filter appear to be identical for the first three days. After three days,
the EK Filter diverges. Although the EK Filter performs poorly over almost
the entire region except for the first three days, the poor performance after
encounter results from the behavior which occurs from three days to encounter.
The accumulated large estimation errors at encounter influence the estimate
throughout the remainder of the period.

The phenomena above can be explained as follows: the conditional
variances become quite small after encounter, and the filters become insen-
sitive to observations. Therefore, a filter that can estimate accurately
around encounter can retain an accurate estimate after encounter. Similarly,
any filter which performs in an unsatisfactory mannér around encounter will
yield an inaccurate estimate after encounter.

Fig. 11-a shows the observation residuals for Simulation 4. The
opservation residual pattern for the EK Filter starts to grow from three
days and is influenced by a large spike around encoﬁnter. After encounter
the residual patterns for the EK Filter and the KGC Filter remains identical
to each other.

The conditional variances are shown in Figs. 11-d and 11-e. It is
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interesting to note that the conditional variances for the EK Filter undergo
a sharp reduqtion at a time of about four days following which the estima-
tion errors begin to drift away. The conditional variances for the KGC Filter
retain a larger value for the period of time from four to twelve days during
which the poor performance of the EK Filter has been accumulated.

From the simulations, it was noticed that the KGC term is negli-
gible at the beginning in comparison with the other terms hx?hi and R in
Eq. (2.57). But, it grows rapidly and becomes the dominating term from three
to twelve days. As a matter of fact, the maximum value of the KGC term is
about ten times larger than the othef two terms. The KGC term becomes again
negligible after the encounter. The above fact implies that the observation
nonlinearity is very severe from three to twelve days. The observations
outside this region appear to be relatively linear. The severe observation
nonlinearity near encounter is seemed to be caused by the dynamic nonlinearity.
The same investigation was made on the other type of observations. The sun-
planet angle measurement has alﬁost the same charactefistics aé the star-
planet angle measurement. However, the range and range-rate observations do
not appear to be influenced by the second order terms and the KGC terms for

both observations are negligible. Hence, no difference between the KGC Fil-

\,

ter and the EK Filter is seen. N
From Eq. (2.57), it can be seen that a large KGC term vields a

smaller optimal gain K than that which results in the EK Filter. Hence,

a smaller conditional covariance reduction occurs and a larger posterior covar-

iance matrix results, as can be seen from Eq. (2.59). 1In Figs. 11-d and 11-e

exactly the same phenomena described above, happens in the region from four

days to encounter.
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Between observations, the conditional variances vary according‘to
the differential Eq. (2.55) and the direction of change depends on the signs
of the Jacocbian matrix fx . At the time of the observation, Eq. (2.59)
governs the conditional covariance matrix reduction. The conditional var-
iances increase only through the dynamics, namely, the signs of fx and de-
crease by either the dynamics or observations, namely hx . For example,
the reduction for the.EK Filter around four days is attributed to the ob-
servations and the one near twelve days appears to be due to the sign changes
of ‘fx .

It appears that near encounter, the dynamic nonlinearity overrides
the information gained through the observations. Physically, this means that
a severe dynamic nonlinearity causes bad predicted observations and observa-
tion nonlinearity. Therefore, large observation residuals are inevitable.

In this situation one can‘ follow one of two procedures: |

1. Discard the observations during this period.

2. Try to update the apriori estimates with larger gains, K
It appears that the EK Filter follows the second course while the KGC Filter
takes the first course. The KGC Filter yields a large value for the condi;
tional covariance mafrix, and hence, leads to a émall value for the gain K
because of the KGC term. This means that the KGC Filter places less weight
on each of the observations obtained during the period of time in which
dynamic nohlinearity is very severe.

In addition to the large value for K , the observation residual
is so large during the brief period of time, as seen in Fig.ril—a, that the
correction to the apriori estimate in the EK filter becomes excessively

_zrge and a poor posterior estimate results. The conditional variances
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.for the KGC Filter depend more on the state dynamics in the region of a
severe dynamic nonlinearity. The sharp decrease of the conditional variances
near encounter is not due to the observations But due to the sign changes

of the Jacobian matrix fx . A large integration step size oftgn causes a
negative variance near encounter. The sign change of the Jacobian matrix

fx incorporated with_the large conditionél variances yields a negative

slope for the conditional variances whiéh can result in negative variances.

The conditional variances for the EK Filter depend largely on the
observation, namely hX in the region where dynamic nonlinearity is high.
The sharp decrease of the conditional variances for the EK Filter around four
days is an indication that the reducfion by the observation overrides the
increase due to the state dynamics. Unusually large reductions of the con-
ditional variance which occur in EK Filter in the early stage of application,
is attributed to this phenomena. However, it can be é nuiéance if the pos-
terior estimate is still far away from the true state even after thé condi-
.tional variances reduced to a zero level. The most interesting observation
is that the EK Filter becomes unstable and the estimate starts to drift away
from the true trajectory whenever the conditional variances are reduced sharp-
ly. Another interesting obser?ation is that each of the Filters (1, 2 and 4)
which include the KGC term have almost identical conditional variances shown
in Figs. 11-d and 11-e, and have very similar observation residual patterns,
as shown in Figs. 11-a.
Figs. 12-a and 12-b show that the estimation errors for the Simu-

lation 5 which reflects the characteristics of Filter 5. Filter 5 includes
only the 0SO term. Filter 5 performs better than the EK Filter ffom three to

nine days. Apparently, the observation second order improves the performance
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of Filter 5 by using the ﬁroper sign. The pdor performanceiof Filter 5 be-
tween nine and twelve days reflects the fact that the 0S0 term influences
the filter with the wrong sign. The poor estimates of Filter 5 after en-
counter are due to the propagated effect of the poor estimate at encounter.
Figs. 10-a and 10-b show the estimation errors for Simulation 3
~which compares Fi;ter 3 with the EK Filter. Filter 3 contains both the DSO
and the 0SO terms. By comparing Figs. 10-a and 10-b with Figs. 12;3 and
12-b, the effect of the DSO term is shown significantly after encounter.
The estimation errors for Filter 3 are.considerably larger than those of
Filter 5 after encounter. Tﬁe difference would be the negative contribution
of the DSO term in the FilterA3, i.e., the DSO term affects the filter with
the wrong sign. The conditional variances are shown in Figs. 10-c¢ and 10-d.
These figufes also represent the conditional variances resulting in Simula-
tion 5. It is interesting to note that both Filters (3 and 5) do not con-
tain the KGC term and the conditional variances are very similar to the one
given by the EK Filter and quite different from those of Filters 1., 2'and 4
which include the KGC term. Fig. 10-e represents the observation residuals
of Simulation 3. This observation residual pattern which contains a large
spike (even larger than that of the EK Filter) is seen also in Simulation 5.
The smooth residual pattern (Fig. 11-a) of the Filters 1, 2 and 4 is primar-
ily attributed to the presence of the KGC term and its side effects.
Simulations 6, 7 and 8 are cénducted mainly to describe the char-
acteristics of the modified truncated second order (MTSO) filter which is
designated as Filter 8. For Simulations 6, 7 and 8, only the X components
of the position and velocity estimation errors, observation residual and the

A~

conditional variances V and Vu

11 are shown in the corresponding figures.

n
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The other components exhibit similar characteristics and are not shown in
this report to eliminate unnecessary space. The only difference between the
MGSO Filter and the MTSO Filter is that the KGC term enters with a plus sign
of one—half in the first Filter and with a minus sign of one-fourth in the e
second. As previousl& pointed out, the KGC term is negligible at the begin-
ning but grows rapidly up to‘ten times the value of the combination of the
other terms,_ hxﬁhz and R , as shown in expression (2.57). Following en-
counter, the value of the KGC term reduces in value. From the above charac-
teristics of KGC terms, it is easy to conclude that the MTSO Filter contains
a potential signuiarity. The optimal gain K given by Eq. (2.57) with a
minus sign of one-fourth of KGC term instead of plus sign approaches plus
and minus infinity as the KGC term approaches the sum of the other two terms,

~

hXPhi and R from bglow and above. In addition, when the optimal gain is
very large with a positive sign, the posterior conditional variance becomes
negative. The phencmena is clearly reflected in Filters 6, 7 and 8, énd is
shown in Figs. 13-a, 13-b, 14-a, 14-b, 15-a, and 15-b.

In general, the MGSO Filter keeps the conditional variances larger
than those of the EK Filter. The MTSO Filter, in contrast, has'a tendency
to keep the conditional variances smaller than those of the EK Filter. How-

ever, the variance becomes meaningless as the KGC term drives the variance

to a negative quantity in Filters 6, 7 and 8.

\)



TABLE 5.

SIMULATION DATA (1-4)

SIMULATIONS

1 2 3 i
FIGURES 8-a,b | 9-a,b 10-a,b,c.d,e il1-a,b,c,.d,e
FILTER TYPE 1 2 3 L
ORBIT TYPE HYPOBOLIC HYPOBOLIC HYPOBOLIC HYPOBOLIC
OBSERVATION TYPE STAR-PLANET STAR-PLANET STAR-PLANET STAR-PLANET
OBSERVATION RATE (DAY) 10-1! 1071 10~1 1071
OBSERVATION NOISE, o (DEG) 104 10~k 1074 10~
TRUE STATE NOTSE, oy (KM/DAY?) 100 109 100 100
APRIORI STATE NOISE, %0a (KM/DAY?) 103 103 103 103
X, = §O =z (x) 103 103 103 103
2o 60 = V. = W_ (KM/SEC) 10" 10-4 10-4 1074
BXO = BYO = BZO (x1) 3x102 3x102 3x102 3x102
v, =V, = Ty, ()2 4x105 4x105 4x105 4x105
Vo | Ty = Vsé = U, (xu/sEC)? ix1072 4x10-2 4x10™2 4x1072
| 677 = 088 = 099 (KM)? 5x104 5x104 5x10 5x10%
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TABLE 6. SIMULATION DATA (5-8)

SIMULATIONS 5 6 7 8
FIGURES 12-a,b 13-a,b 14-a,b 15-a,b
FILTER TYPE 5 6 7 8
ORBIT TYPE HYPOBOLIC HYPOBOLIC HYPOBOLIC HYPOBOLIC

OBSERVATION TYPE

STAR-PLANET

STAR-PLANET

STAR~PLANET

STAR-PLANET

OBSERVATION RATE (DAY) 1071 10-1 1071 1071
OBSERVATION NOISE, oﬁ (DEG) 10-" 1074 107" 1074
TRUE STATE NOISE, o (KM/DAY?) 100 100 100 100
APRIORI STATE NOISE, %A (KM/DAY?) 103 103 103 103
io = ?o = 20 (kM) 103 103 103 103
R /o 60 = %O = Wo (KM/SEC) 10~ 104 10-4 10~4
b = Byo = BZO (KM) 3x102 3x102 3x102 3x102
611 = 022 = 933 (KM)2 4x105 ux105 x105 4x105
ﬁo/é Guu = 655 = 666 (KM/SEC)?2 ux10-2 ux10-2 ux10-2 4x10-2
677 = 688 = Ggg (KM)2 5x104 5 10" 5 10" 5 10%
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L.4 Applications of the KGC Filter to the Hypobolic Orbit

In the previocus section, several filters were diécussed and the DSO
and 0SO terms were characterized in conjunction with the KGC term. Since
the KGC term is the only term which impro%es the filter performance, the KGC
filter which includes only the KGC term is designated as the best filter
among those listed in Table 1.

The KGC filter is further tested through numerous simulations. The
Simulations 9 through 14 are conducted on a hypobolic orbit with the sun-
planet angle measurements. The simulations are designated to determine the
effects of state noise covariance matrix Q , initial state errors io/o s
integration step size, observation rate, initial.covariance Vo/o and ob-
servation noise covariance matrix R . Simulation 10 is the reference case
to which all other simulations are compared. The input data are given in

Tables 7 and 8.

Simulation 9 is specifically designed to illustrate the effect of

using two different Q's in Eq. (2.55). OQT is the true sfandard deviation
of the state noise u which is used to compute the true trajectory. OQA is
the apriori standard deviation. The square of OQA is used in Eq. (2.55)

for the estimation procedure. It is common practice to include a Q in Eq.
(2.55), although there may be no state noise u assumed. This procedure is
followed to keep the value of the conditional variances above a certain level
so that the filter can maintain a reasonable gain K and, hence, will be
sensitive to the observations. Usually the EK filter reduces the conditional
covariance very rapidly after a few observations are made, and, hence, the
filter becomes saturated and insensitive to the observations.

Figs. 16-a and 16-b show the position and veloéity estimation

&\
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errors, respectively, for Simulation 9. The condifional variances and ob-
servation residual are almost identical to the ones given in Figs. 17-c,
17-d and 17-e which are obtained.by using the same OQT and GQA . The
observation residual pattern should not be assumed to be zero except during
the brief time interval in which the spike occurs. The non-zero value of
the residuals do not show up on the scale used to plot the results.

Since the sun-planet aﬁgle measurement is restricted to the eclip-
tic plane, the measurement does not include very much information on the 2
components of position and velocity. This fact is reflected in the figures
related to fhe Z components from zero to ten days. Both the EK filter
and the KGC filter perform reasonably wéll up to eight days. As a matter
of fact, they are almost identical. The EK filter starts to drift away from
the true trajectory after eight days. Around twelve days, the EK filter be-
comes extremely unstable, oscillates several times with sharp spikes during
this short period of time and then diverges eventually. The oscillatory
spikes near encounter are not shown in the figures simply because only every
third data point is shown in the figures. As seen in Fig. 17-e, the esti-
mate with the EK filter is influenced by a spike in the observation residual
pattern around encounter. The actual observations which depend mainly on
the true states and the small observation noise contain equally good infor-
mations at any time. But the predicted observation depending on the current
estimate can be quite erroneous. The erroneous observation residuals around
encounter are incorporated with a large optimal gain, K , during the same
period and the update of the apriori estimates is, consequently, too large,
causing the EK filter to diverge.

The KGC filter keeps the conditional variances large in the critical
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‘period of time from eight to twelve days. As a result, the KGC term dominates
fhe other twd terms, .hxﬁhz and R:, and the values of the optimalvgain, K,
remain small. Through this effect, the KGC term makes the filter insensitive
to the observations which could be érroneous, in the region where the dynamic
nonlinearity is very severe.

Simulation 10 shows the effect of using the same values for 6QT
and OQA - It is noticeable that Simulation 9 which uses two different val-
ues for %o band o ) yielas slightly smaller estimation errors for both
the EK and KGC filtérs than those of the Simulation 10 which uses the same
value. Since the sun-planet angle measurement is restrictedAto the ecliptic
pléne, the EK filter experiences severe nonlinearity effects on the Z com-
ponents. - The effect can be seen in the Z components of the conditional
variances shown in Figs. 17-c and 17-d.

Simﬁiatiqn 11 shows the effect of the initial state errors. The
errors are chosen ten times larger than those of Simulation 10. The conver-
genée characteristics, except the Zv components, appear to be well behaved
for both filters immediately after taking the observations. However, the
EK filter displays instability énd-divergence characteristics around en-
counter, although the KGC filter continues with an accurate estimate through-
out this extremely nonlinear region.

bverall, the estimation error patterns shown in Figs. 18-b and 18-c
are very much the same as those of Simulations 9 and 10, except during the
first few days. The observation residual pattern is shown in Fig. 18-a and
the conditional variances are almost identical to the one given in Figs. 17-c
and>17—d. Again, the residuals outside the spike zone do not show up because

of the relatively small size compared with the spike.
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Since the nominal trajectory changes very rapidly around encounter
in the hypobolic drbit and near periapsis in the elliptic orbit, the dynamic
nonlinearity appears to be very severe in these regions and, consequently,
so is the observation nonlinearity. In order to minimize the effects of the
nonlinearities, a variable integration step size and observation rate are
adopted in the Simulation 12. Initially; the integration step size and the
observation intervals are set to 1/10 day, and then the actual integration

step éize, ATi , and observation interval, ATo ,» are determined as follows:

ATi = ATo (1/10) - Integer Value of (r/ro) , T > v

or

AT, = AT

(1/10) / Integer Value of (ro/r) s T > T

where r, is the initial distance between the spacecraft and the target
planet, Jupiter, and r is the current distance. As seen in Fig. 7, ATi
and ATO » for example, become nearly 1/20 of the initial step size, 1/10
day near eﬁcounter in the hypobolic orbit.

Figs. 19-a and 19-b show the estimation errors for the position
and velocity components. An interesting fact about the error pattern of
Simulation 12 is that the signs are reversed when compared with those of
Simulation 10. Figs. 19-c and 19-d show the conditional variances and a
slightly different pattern is seen near encounter when compared with those
in Figs. 17-c¢ and 17-d.

Simulation 13 is conducted with a ten-times larger initial condi-
tional variances of the velocity components than those of Simulation 10. pue
‘to the larger initial conditional variances, the KGC term starts influencing

the KGC filter earlier than it does in Simulation 10. Figs. 20-c, 20-d and
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20-e répresent the conditional variances and observation residuals, respect-
ively. Estimation errors are shown in Figs. 20-a and 20-b.

Simulatioﬁ 14 shows the effect of a large observation noise stand-
ard deviation or in the'KGC filter. A value ten times larger than the
value of 0p which was usgd in Simulation 10 was adopted as an observation
noise standard deviatipn in Simulation 14,

It is found in the EK filter which doés not include the KGé term
that hxﬁhi dominates R in Eq. (1.35) during the early stage of estima-
tion. Later the values of R dominate. From the above observation, it is
understood that the KGC term which is negligible when compared with the
other two terms, hxﬁhz and R in Eq. (2.57), cannot affect the performance
of the KGC filter very mucﬁ. But in the region where the KGC term dominates
the other two terms and R is larger tﬁan hxﬁhz , the effect of a large
R shows up. For example, consider the period from nine to thirteeﬁ days
in Figs. 21-b and 21-c. After encounter, the value of the KGC term diminishes
due to the combined effect of small conditional variances and observation
second partials hXX and thereafter the KGC term has virtually no influence
on the KGC filter. Therefore, the KGC filter performs like the EK filter
after thirteen days. For a small O > the effect of the KGC term becomes
very significant and the KGC filter is very desirable whenever a smaller Og
or equivalently accurate observation, is available.

The corresponding conditional variances and observation‘residuals

are shown in Figs. 21-d, 21-e and 21-a, respectively.



TABLE 7. SIMULATION DATA (9-11)
SIMULATIONS 9 10 11
FIGURES 16-a.,b 17-a,b,c.d,e 18-a,b,c
FILTER TYPE mn mn mn
" ORBIT TYPE HYPOBOLIC HYPOBOLIC "HYPOBOLIC
OBSERVATION TYPE SUN-PLANET SUN-PLANET SUN-PLANET
OBSERVATION RATE (DAY) 1071 1071 107!
OBSERVATION NOISE, o, (DEG) 10~ 10~ 107"
TRUE STATE NOISE, ot (KM/DAY?2) 100 102 102
APRIORI STATE NOISE, %0a (KM/DAY?) 102 102 102
X = Y =z () 103 103 104
(@] o] o]
% U = V. = W (KM/SEC) 104 104 10-3
o/o o o o
b, = b = b (XM) 3x102 3x102 3x102
X0 yo Z0
7 - U = U 5 x105 ux 05
Vs Voo Vay (K1) ux;o 4x10 1
v v = v = 7 2 -3 -3 L|.><10_3
Voo | Vi Ve Veg  (KM/SEC) Lx10 4x10
V.. = V. = ¥V 2 4 4 4x10%
V77 V88 99 (KM) 5x10 5%x10 x
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TABLE 8.

SIMULATION DATA (12-14)

SIMULATIONS 12 13 1n
FIGURES 19-a,b,c,d 20-a,b,c,d,e 21-a,b,c,d,e
FILTER TYPE b i m
ORBIT TYPE HYPOBOLIC HYPOBOLIC HYPOBOLIC
OBSERVATION TYPE SUN-PLANET SUN-PLANET SUN-PLANET
OBSERVATION RATE (DAY) *SEE FOOT NOTE 1071 10-1!
OBSERVATION NOISE, o, (DEG) 10~ 10~% 103
TRUE STATE NOISE, oqr (KM/DAY?Z) 102 102 102
APRIORI STATE NOISE, o0a (KM/DAY?2) 102 102 102

X =Y = Z (KM) 103 103 103

[e] [e] [¢] .
% v = v = W (KM/SEC) 104 10~ 10~
o/o o) 0 o) ,

b = b = b (KM) 3x102 3x102 3x102

X0 yO yAe)

7 = v - U 2 5 x105 ux10°>
| V.4 Vs Vo, Gan 1x10 4x10
. 7 = v = 7 2 -3 -2 X _3.
/o Vi Ve Veg (KM/SEC) 4x10 4x10 4x10

7 - v - O 2 I 4 5x10Y

Voo a8 Vog  (KM) 4x10 5x10 1

*Integration step size and observation rate are chosen such that

1
AT = 10

« INTEGER (r/ro)

b

r

>

r or AT =
e}

1
—— > .
10/INTEGBR (ro/r) s T >

L6
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4.5 Application of the KGC Filter to the Elliptic Orbit

The XGC Filter is applied to the problem of determining an ellip-
tic orbit around Jupiter with sun-planet, star-planet and range-rate plus
sun—planet angle measurements. Since the variation of the Z cbmponents_in
the nominal trajectory shown in Fig. 6 is very small compared with the X
and Y components, the initial state errors for the 2 cqmponents of posi-
tion and velocity are chosen as one-tenth of those of X and. Y components,
i.e., X and Y components of position and velocity estimation errors are
initially chosen as 103 km and 10~% km/sec , reséectively, and Z com-
ponents as 102 kﬁ and 10~° km/sec , respectively.

Figs. 22-a and 22-b show the estimation errors for Simulation 15.
Unlike the hypobolic orbit, the EK Filter gradually drifts away after fifteen
days during which time the dynamic nonlinearity affects grow large. The con-
ditional variances are shown in Figs. 22-c and 22-d. Fig. 22-e shows the
observation residual pattern which consists of every tenth data point con-
nected with straight lines. Simulation 18 is désigned to see the performance
of the KGC Filter for a long period of time. The period of estimétion is
extended to 62 days which is more than two revolutions of the elliptic orbit.
The same input data as that used in Simulation 15 are used for Simulation 18.
The estiﬁation errors for the position and velocity are shown in Figs. 25-a
and 25-b. For the first Soldays, the estimation error patterns of Figs. 25-a
and 25-b match identically with the ones shown inAFigs. 22-a and 22-b. An
interesting fact is that both the EK Filter and the KGC Filter exhibit a per-
iodicity in the estimation errors. However, the errors for the EK Filter
grow larger during the second revolution and reach an unacceptable value.
However, the KGC Filter realizes a very accurate estimate throughout the en-

tire period and, as a matter of fact, the estimation errors are considerably
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smaller during the second revolution than those during the first revolution.
Around the second periapsis, the EK Filter estimation errors exhibit spikes
in the velocity estimation error components and the numerical value of»the.
position changes sign. The conditional variances are shown in Figs. 25-c and
25-d.

From the examination of Figs. 25-a, 25-b, 25-c and 25-d, it can be
seen that the KGC Filter is superior to the EK Filter in the region where
the conditional variances of the KGC Filter are larger than those of the EK
filter. The improvement achieved in the KGC Filter is strictly due to the
effect of the KGC term in the optimal gain K. Fig. 25-e shows the observa-
tion residual. It shows a couple of spikes around the second periapsis.
For the blown up scale, the residual pattern of every tenth data point for
the first 30 days matches with the one shown in Fig. 22-e.

Simulation 16 is conducted with sun-planet angle measurements. The
estimation errors shown in Figs. 23-b and 23-c reflect the characteristics
of the sun-planet angle measurement. Since the sun, Jupiter and the space-
craft are all almost on the ecliptic plane, the information about the 2
components is poor and the EK Filter determines a poor estimate of the Z
components of position and velocity. Figs. 23-d, 23-e and 23-a show the
conditional variances and the observation residual pattern, respectively.
The residual pattern is obtained by connecting every tenth data point with a
straight line.

The Simulation 17 is conducted with two kinds of observations, i.e.,
rangefrate plus sun-planet angle measurements. Figs. 24-a and 24-b show the
estimation efrors and the conditional variances are given in.Eigs. 24-d and

24-e. The Z components are estimated poorly again. Fig. 24-e shows the
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two observation residuals, one for the range-rate and the other for the sun-
Planet angle'ﬁeasurement. With the data of Simulations 16 and 17, the filters
were examined for 62 days. The same characteristics discussed in Simulation
18 can be found. The conditional vériances vary periodically and large spikes
can be found in the observation residual and velocity estimation errors for
the EK Filter. The EK Filter estimation efrbrs are incomparable at the sec-
ond revolution. Actually, they diverge after the second periapsis. However,
the KGC Filter performs éxceptionally well through out the entire period and
even better at the second revolution.

Simulatiohs 1 through 8 are re-examined by using the variable inte-
gration step size and observation rate discussed in Section UL.4. The.char—

acteristics discussed in the Section 4;3 are unchanged.

It is found that variable integration step size and rapid observation
raté do not change the characteristics of Simulations 15, 16, 17 and 18 ex-
cept that over all estimation errors are smaller than those of the constant
integration step size and observation rate. However, the improvement is not
significant considering the computer time. Usually, for this case, the EK
Filter reduces the estimation errors more significantly than the KGC Filter

does, but the EK Filter solution will diverge still.



TABLE 9. SIMULATION DATA (15-18)
SIMULATIONS 15 16 17 18%
FIGURES 22-a,b,c,d,e 23-a,b,c,d,e 24-a,b,c.d,e 25-a,b,c,d,e
FILTER TYPE " " n "
ORBIT TYPE ELLIPTIC ELLIPTIC ELLIPTIC ELLIPTIC
RANGE-RATE
OBSERVATION TYPE STAR-PLANET SUN-PLANET SUN- PLANET STAR-PLANET
OBSERVATION RATE (DAY) 2x1071! 1071 1071 2x107 !
- -R = -6 -
OBSERVATION NOISE, o, (DEG) or (KM/SEC) 10-* 107" E_P ig_q 107"
TRUE STATE NOISE, o1 (KM/DAY?) 100 100 10V 100
APRIORI STATE NOISE, Y0 103 103 103 103
io = ?o , 20 (KM) 103,102 103,102 103,102 103,102
. - = —— " 5 M 5 4 40 5 10 *,10 3
%o 0, Vooo» W (KM/SEC) 10 *,10 10 4,10 10 %,10 g
b = b = b (KM) 3x102 3%102 3x102 3x102
p{o] yo Z0
R - = - 5
V.. o= .. = V.. (xu)2 4x105 Vi1 Va2 4x10 4x105 4x105
11 22 33 _ y
' 4x10
33
A A~ A = = -4
§ Vo= % = ¥ (xm/SEC)2 4102 Vi Ves 4x10 x10™3 4x10-2
o/o Uy 55 66 _ -5
\Y = L4x10
66
7 = {7 = ‘+ L} ,+ x ,+
Voo Vog Vgg (KM) sxio 5x10 5x10 | 5x10

*Estimation performed for 62 days which is about

two revolutions.

€Cct
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CHAPFTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

In the investigation described in the previous discussion, a compar-
ative study has been made of nonlinear estimation algorithms and their appli-
cation to the orbit determination problem for interplanetary spacecraft. By
using the properties of a Martingale series and Loeve's smoothing properties,
a second order nonlinear estimation algorithh is derived. The algorithm is
shown to be of the Gaussian second-order class as distinguished from the
truncated second-order class. Both classes of second order filters retain a
second order term in the'state dynamics, the observation state relation and
in the optimal weighting matrix (Kalman gain), respectively. The merits of
each of the algorithms as well as the influence of each second order term is
evaluated by a numerical simulation of the orbit determination for a Jupiter

fly-by and Jupiter orbiter missions.

5.2 Conclusions

Based on the results of extensive numerical simulations on the
Jupiter fly-by and Jupiter orbiter missions,_the following conclusions can be
drawn for the class of problems considered here:
1. The system dynamic influences the performance of the EK Filter
through
i) initial csnditions
ii) conditional covariance matrices

iii) predicted observations
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The effect of the initial condifiéns is considered to effect the system dy-
namics directly, in contrast to the effects of the other two factors, which
are regarded as an indirect effect on the performance of the filter. It is
concluded that the indirect effects of the system dynamics are more severe
than the direct effects, especially when the system dynamics are highly non-
linear.

2. The effect of the dynamic second order (DSO) term cannot be
isolated. If the conditional variances are large, which means that the ex-
tended Kalman Filter does not perform adequately, the efféct of DSO term is
very severe and causes the second order filters (MGSO and MTSO) to diverge,
in a situation when the EK Filter performs reasonably well. In contrast, the
small conditional variances, which imply that the EK Filter works very well,
do not reveal any differences between the second ofder filters (MGSO and MTSO)
and the EK Filfer. As a matter of fact, there is no reason for using a sec-
ond order filter if the conditional variances are small and the EK Filter
performs adequately. By including the dynamic second order (DSO) term, ap-
proximately 30% more computer time is required than that required by the EK
Filter. Furthermore, any filter including the DSO term is very sensitive to
the initial covariance matrix, if a dynamic nonlinearity is significant at
the beginning. It is interesting to note.that Athans et al. (27), based on
a different example problem, concluded that the DSO term is the major fac-
tor in improving the performance of the MGSO Filter. Hence, the conclusions
reached in this investigation regarding the DSO term should be regarded as
problem dependent.

3. The observation nonlinearity depends on the type of observa-
tions and the dynamic nonlinearity. The range and range-rate observation in

the Jupiter fly-by problem are regarded as relatively linear observations.
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Like the DSO térm, the effect of the observation second order (0S0) term can-
not be determined for all problems. The same conclusions as those reached
for the DSO term can be stated for the 0SO term. But the effect of the 0SO
term is not as severe as the effect of the DSO term for the MGSO Filter.
4. The Kalman Gain Compensated (KGC) Filter appears to give a
quite acceptable behévior based on the following observations:
i) In the region Where-dynamic nonlinearity is not significant,
the KGC Filter acts like the extended Kalman filter.
ii) 1In the region_where dynamic nonlinearity is very severe-and,
consequently., the observation residuals are'large, the KGC
Filter down weights the large observation residuals.
.1iii) The effect of the KGC Filter becomes more significant when the.
observation noise R is small and the state noise Q is large.
This fact implies that the KGC Filter is more desirable when
the observations are measured accurately and when the dynamic
noise is large or‘equivaleﬁtly when the dynamic process is
poorly modeled.
iv) The KGC Filter is very stable and insensitive to the dynamic
nonlinearity as compared with the EK Filter.
v) The KGC Filter maintains an accurate estimate for the highly.
nonlinear type of observations while acting like the extended
Kalman Filter for the relatively linear type of observations.
vi) In contrast to any other second order filter, implementatién
of the KGC Filter is as feasible for complex problems as the
extended Kalman Filter'is.

5. If no state noise is assumed, the EK Filter works adequately
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and the differencés betweeh'the two filters’(ﬁk énd KGC) are negligible. Tﬁé
absence of state noise implies thét the conditional.variances cannot be too
large. |

7. For the Jupiter fly—by, the extended Kalman Filter determines
an édequate estimate up to a period of encounter minus three days. However,
the estlmate diverges around encounter when the dynamic state noise is in-
cluded while the KGC Pllter yields accurate estimates.

‘8. For the Jupiter orbiter, the estimate of the extended Kalman '
Filter drifts away gradually from the true trajectory and dive?ges at the
second revolution, when the dynamic state noise is included while the KGC

Filter yields an accurate estimate.

5.3 Recommendations for Future Study

The research reported here is an‘indication of a successful appli-
cation of an approximate nonlinear filter and indicates the péssibility that
the Kalman Gain Compensated Filter can be applied to other probléms. The
following.studies are recommended: ‘

1. Application of the KGC Filter to the orbit determination prob—.
lems associated with re-entry, near-Earth and lunar satellites, Mariner and
Viking missions, should be carried out. In particular, application of the
KGC Filter to the.re—entry and ascent phases of the shuttle navigation prob-
lem is recommended. |

2. The applicability of the square root covariance and the consider
filter versions of the Kalman Gain Compensated Filter should be developed.

3. An extended study of nonlinear estimation algérithms and their
applicability to the orbit determination problems should be made. The com-

parative study should be made in the frame-work of the applicability of the
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methods to anticipated orbit determination problems. In the study, particu-
lar attention should be given to those data types which undergo significant
geometrical changes during a mission. The objective of such a study would
be to define particular missions and data types for which nonlinear orbit
determination algorithms will yield a significant improvement over the es-
timate obtained with the extended Kalman Filter.

4. TFurther study of the effects of the dynamic second order (DSO)
term and the observation second order (0S0) term should be made. |

5. An extensive study of the Gaussian second order filter and the
truncated second order filter should be made in the direction of determining

the characteristics of the random forcing term in the covariance equation.



order partial derivatives fXX

APPENDIX A

THE PARTIAL DERIVATIVES

The first order partial derivatives

timation algorithm are defined in this appendix.

From Eq. (3.5), the (9x9) matrix fx

f and h and the second
X X

and hXX which appear in the nonlinear es-

can be partitioned as follows:

) I )
f =
X A21 ¢ A23
¢ ¢ ¢ |
where is the 3x3 null matrix and I is the 3x3 identity. The symmetric
submatrices A21 and A23 are defined as follows:
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The first order partial derivative matrix hX

where
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is defined as follows:
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The second order partial derivatives fXx are defined as a (9x9x9) three-
dimensional array and each layer is defined as a symmetric (9x9) matrix. The

three-dimensional arfay can be pictured as shown in Fig. 26.

Each layer is further partitioned into (3%x3) matrices and they are as follows:

i i
Fl1 ¢ Fis
Fto= ) ¢ ¢' i = 4,5,6
iT i
| Fia o Fi3 |
) ¢ o ]
il - ) ) ) i = 1,2,3,7,8,9
L ¢ ) ¢

where ¢ is a (3x3) matrix with identically zero elements. The submatrices

i i i .
F11 s F13 , and F33 are redefined as follows:
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The second order partial derivative

array shown in Fig. 27 and each layer is a (9x9) symmetric matrix.

Each layer is partitioned into (3x3) matrices and they are as follows:

All submatrices with the exception of D are

Hl =

1,2,3,7,8,9
727, 27,
-15 2B+ 3 P
P P |
ZIZDZD 2zp_
-15 I’7 + 3 I’S
P P
+
Tt
h
XX

A 0 A
¢ ¢ ¢
A | ¢ | a_
[ ¢ ) 0]
¢ ¢ 0
T ] ¢ E |

they are defined as follows:

Z
+ uS 3 ;%
2
tht 2Zt
- M -15 I’7 + 3 rs
S t £

is a (4x9x9) three-dimensional

-

B A B
= | A ¢ A
| B A B |
RN ¢ ]
= ¢ ¢ ¢
K ¢ ¢

156

(3x3) symmetric matrices and
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Figure 26. Three-Dimensional Array fxx
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APPENDIX B

CONDITIONAL EXPECTATION AND SMOOTHING PROPERTY

Loeve (34) introduced the concept of '"conditioning" in terms of sub
o-fields of events, and further conditional probabilities of events and con-
ditional éxpectations of random variables "given a o-field B" as B-measur-
able functions defined up to an equivalence. The conditional probability of
an event A "given an event B'" corresponds to that of the frequencies of the
occurrence 5f A in the repeat trials where B occurs. For every event A, the

relation
PB - PEA = PAB : (B-1)

defines the conditional probability P(A/B) of A given B as the ratio
PAB/PB , provided B is a nonnull event. 1In a more mathematical form, the
function PB on the o-field A of events, whose values are PBA , AeA

is called the conditional probability of A given B . Since P on A is
normed, nonnegative and o-additive, so is P on A ; and P satisfies the

B B

following condition

B

Thus, the conditioning expressed by "given B" means that the initial proba-
bility space (R,A,P) is replaced by the probability space (Q,A,PB) . The
expectation of a random variable X on this new probability space is called

the conditiomial expectation given B and is denoted by

E[X/B] = J XdPB = J XdPB + J ° XdPB (B-2)
B B
c . - . c
where B is the complement of B . Knowing that PB = 0 on {AB ,AcA}
and that PB = %r-P on {AB,AeA} from Eq. B-1, Eq. B-2 becomes
B
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E[X/B] = == | xap (B-3)
PB
B .
which is the definition of the conditional expectation of X given B . The

conditional expectation acquires its full meaning when interpreted as values

of functions as follows: the number E[X/B] is no longer assigned to B but
to every point of .B , and similarly for E[X/BC] , so that we have a two-
valued function on § , with values E[X/B] for weB and E[X/BC] for weBc
More generally, let {Bj} be a countable partition of © and let B be the
minimum o-field over'this partition. Let I be the family of all random var-
iables X whose expectation, E[X] , exists so that their indefinite integrals,
hence conditional expectatibns given any nonnull event, exist. Then the condi-
tional expectation of X given B 1is defined as the following elementary

functions (see page 64 of Loeve for the definition) up to an gquivalence

E[X/B] = z(%[ XdP)IB 5 XeX (B-4)
j’B '

5 3
The above is the comstructive definition and is different from (B-3) in the
sense that conditioning is given as a o-field, B; instead of an event B .
BeB . It can be easily seen further that the coﬁditioning can be either as a
random variable which is B-measurable function or as an output of the random
variable. If the partition {Bj} is not countable, the above constructive
definition is not applicable and rather powerful tool, némely, the Radon-

Nikodym theorem is employed and the descriptive definition is followed. TLet

Pg Dbe the restriction of P to B , defined by

BB = PB , BeB |, - (B-5)

then the conditional expectation E[X/B] of X given B is any B-measur-

abel function whose indefinite integral with respect to PB is the restriction
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to B of the indefinite integral of X with respect to P . This definition
means precisely that, for every XeX , E[X/B] is defined by

[ E[X/B]dPB = J XdP , BeB (B-6)
B B

up to an equivalence. Loosely speaking, the operation E[X/B] is a B-smooth-

ing and some of‘its imﬁortant properties'ére quoted from Loeve without proof,

1. On every nonnull atom® BeB , E[X/B] 1is constant and its value E[X/B]
is the average of the values of X on B with respect to P .

2. For every B independent of the o-field BX of events induced by X
E[X/B] = EX a.s.

3. Conditional expectation operator E[+/B] and B-measurable factors com-

mute, that is, if X is B-measurable, then
E[XY/B] = XE[Y/B] a.s.
4. If BCB' ., then
E[E[X/B']1/B] = E[X/B] = E[E[X/B]/B'] a.s.

It is interesting to note that for the "least fine" or "smallest" of all pos-
sible o-fields BCA , that is, for B, = {9,020} , E[X/BO] = E[X] almost
surely, which means that unconditional expectation is a special case of con-
ditional expectation whose conditioning is merely the least fine o-field.

It is noted also that any deterministic quantity is a random variable which

is measurable over the least fine o-field.

*B is a nonnull atom of B, if PB > 0, and B contains no other sets belong-

ing to B than itself and the ehpty set.
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The o-field A 1is induced by the atom set A, and A2 and a finer o-field
B containing A is'induced by the atom set B1 . B2 , B3 , Bq and B5
in Figure 28. TFrom the figure, it is apparent that the finer the o-field B
is, fhe closer to X(w) the conditional expectation E[X/B] is. If a
o-field B is identical to the o-field induced by X(w) , then E[X/B] is
identical to X(w) almost surely. The variance E[{X - E(X/B)}2?] is pro-
portional to the area between two random variabies X(w) and E{[{X/B] and
the conditional variance E[{X - E[X/B]}2/B] is constant on every nonnull
atom set B of B and is the average of {X - E(X/B)}2 on B

Since the conditional expectation is defined in an equivalence
sense, the area under the conditional expectation E[X/B] for various o-field
B must be identical to the area under the random variable X(w) , which is the
unconditioﬁal expectation E[X] . The conditional expectation E[X/Bj is
the closest approximation of X(w) within the class of B-measurable func-

tions in the sense that the variance is minimized.
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APPENDIX C

RANDOM WALK, BROWNIAN MOTION AND WHITE NOISE

Hiétorically random-walk models serve as a first approximation to
the theory of}diffusion and brownian motion, where small particles are ex-
posed to a tremendous number of molecular shocks. Each shock has a negli-
gible effect, but the superposition 6f many small actions produces an obser-
ivab;e motion. Accordingly we want to present a random walk where the indi-
vidual steps ére extfemely small and occur in very rapid succession. In the
limit, the process will appear as a continuous motion, i.e., the so-called
Brownian motion. Once we have grasped the concept of Brownian motion, the
white noide, which is fictitious and nonexsiting 5ut enables human beings to
handle many mathematical problems, can be formally defined as a time deriva-
tive of Brownian motion. Here a brief summary of Papoulis' (36) discussion
on the subject is presented.

The underlying experiment is the tossing of a fair coin aﬁ infinite

number of times, and each tossing occurs every T . seconds. At each tossing
we take a step, to the right if heads show, to the left if tails show. Our
position at t will be denoted.by X(t) . Clearly, X(t) depends on the
experimental outcome, i.e. on the particular sequence of heads and tails.
We have thus created a stochastic process known as random walk. Each sample
function of this process is of stair-case form as in Fig. 29 with discontin-
uities at the points t = nT the steps occur instantly and their length
equals S .

We denote by x, a random variable equal to *S, if our iEE-step

is to the right or left, i.e. heads or tails. Thus
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P{x_ = 8} = P = 35
1
P{xi = -8} = q = %
E{x.} = 0
1
E{x2} = g2
1

Note that the random variable. X, is independent and has zero mean. The

position at t = nT 1is clearly a random variable given by

= » s o e C"1
X(nT) X, t %, t +x (C-1)

Suppose that after the first n tossings, k heads show, then the value of

X(nT) would be given by

X(nT) = XS - (n-%k)S = (2k -n)S = r8 (c-2)
where
r = 2k -n ' (c-3)
. ' . Co r + n. . .
Since {X(nT) = S} is the event {k heads in n tossing} the

probability is given by

r+n
2

+ B

P{X(nT) = »rS} = P{ (c-4)

heads} = n

M:’lH

If n is large and npq >> 1 , Demoivre-Laplace theorem (38) is applicable

for values of k in the vnpq neighborhood of its most likely value np ,

np - vnpq < k < np + vnpg (C-5)

and the approximate form of Eq. (C-4) is given by
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: - 2
P{k heads} 3 L -k 2nnp) (c-6)
T pq
Substi . _ _ 4 _n+r . .
stitution of P = q = % and k = 5 into Eq. (C-6) yields the
following approximate expression
. 2 .
P{X(nt) = r§)} = —f—e - - R
vn /2

provided that r is of the order of /o .

Furthermore, it can be shown that#®

P{X(nT) < rS} = % + erf (C-8)

r
Vo
Finally, the mean and variance of the random variable X(nT) are easily ob-
tained and they are as follows:

E[x(nT)] (c-9)

It
o

- ns? . (C-10)

E[x%(nT)}

In the following discussion, Brownian motion is developed as a limiting form

-of the random walk. For the time
t = nT (c-11)

the mean and variance of X(t) become

E[X(t)] = 0 (Cc-12)
2
E[X2(t)] = E%,. . (C-13)

%#Athanasias Papoulis, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, p. 68.
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Suppose now that we keep t constanf but we make S and T tend to zero.
The variance of X(t) will remain finite and different from zero only if S
tends to zero as VT . Otherwise, X(t) would be meaningless. Therefore,

assuming
§2 = of - (C-14)
we define the process W(t) as a limit

W(t) = %ig X(t) (C-15)

A family of continuous functions results for almost all outcomes, which is
known as a Brownian motion or Wiener-Levy process. From Eqs. (C-9) and

(C-10), the mean and variance of this process are obtained and they are

E[W(t)] (c-16)

1]
(o]

E[W2(t)] ot | ‘ (c-17)

it

The value of random process W(t) can be determined from Eq. (C-2) and given
by

W = 1S (C-18)

In connection with Egs. (C-11), (C-14) and (C-18), we have the following ex-

pression:

- WS oL w_o_ (C-19)

r
Vo Yt/T VtSZ/T Yot

and hence the probability distribution F(W,t) is obtained as a limit of

Eq. (C-8)

F(W,t) = P{W(t) < W} = % + erf — (C-20)
Yot

The probability density f£(W,t) is readily determined from Eq. (C-20) and
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is given by

_ 1 w2
flw,t) = exp (- 55;0 (C-21)
20t

Thus, the random process W(t) is normal, with zero mean and variance ot
The fact to be pointed out here is that in passing to a limit, all

formulas for the process W(t) remain meaningful and agree with physically

significant formulas of diffusion theory which can be derived under much

more general conditions by more streamlined methods (Einstein-Wiener theory

and Uhlenbeck-Orstein theory). For example, the density functién is obtained

as a solution of the diffusion equation by Einstein (37). The same thing can

be done by using the autocorrelation of the solution of the Langevine equa-

tion (36).
“From Eq. (C-1), it is seen that for t, >t W(tl) - W(tz) is
independent of W(t2) - W(o) = W(tz) . Heﬁce,
E[(W(t)) - WE ) IW(t,)] = EfW(ty) - Wt )]E[W(t)] = o (Cc-22)
Thus,

E[W(t, )W(t,)] - E[WZ(tQ)] = 0 (C-23)

Since the left hand side of Eqg. (C-22) is an autocorrelation R(tl’tg) and

the right hand side is at2 from Eq. (C-17), the following is developed.

at2 for tl t2
R(tl,t2) = (C-2u4)

atl for t1 t2

1.v

1A

An infinitesimal increment dBt of Brownian motion W(t) is defined as

dst = Wt +e) - W(t) (C-25)

The covariance of dBt is determined from Eq. (C-24) as follows:



E[dB, ,d8, ]

E[dBtdBt]
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E[{W(t + e) - W(t)HW(t + e) - W(t)}]
R(t + e,t + e) - R(t + e,t) = R(t,t + e) + R(t,t)
o(t + e) - at- - at + at

e . ' (C-26)

If we formally define white gaussian process wu(t) as a time derivative of

Brownian motion as follows:

ag.

_odw(t) _ lim Tt
A S (e

Then the autocorrelation of white gaussian process u(t) is of the form

lim

Elu(t)u(Tt)] = g- = ad(t - 1) (C-29)

e>0

Therefore, the variance of white Gaussian process wu(t) ' is infinite, which

is in agreement with the axiomatic definition.



APPENDIX D

MARTINGALES
A sequence of random variables Xy o%pseee is called a martingale
if

Ellx [l <> | n>1

and (D-1)

1
x

"‘,X ]

E[xn+1/x1, n n

with Probability 1.
A stochastic process >{xt,teT} is called a martingale if
. ..
E[‘xt[] o

for all t and if, whenever n >1 and t, < e+ < tn

1 +1

Elx /X aeeeux,. ] = x (D-2)
tn+1 tl tn n

with Probability 1.

<Theorem 1>

If YysY,s¥gsttt are defined as.
Y1 7 % 0 Yy T Xy T X s Y3 T Ry oXy o, 0t (D-3)

then, if the X~ process is a martingale,

I
(@]

E[Iynl] < @ b E[yn+1/ylﬁ...3yn]: ] n 2 1 ° (D‘q‘)

with Probability 1. The xn's are thus partial sums of the series z Vo
n
n
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where the yn's satisfy the condition (D-4). Conversely, the partial sums

of any such series constitute a martingale.

<Proof>
xn's and yn's are linearly related and, hence, the mapping ma-

trix is of full ¥ank. Therefore, the inverse of the mapping matrix exists,

which implies that the conditioning '{yl,'°°,yn} of (D-4) can be replaced
by the conditionihg '{xl,---,xn} . Thus

E[yn;l/yl’...’yn]

E[(xn+ - xn)/xl,---,xn] (D-5)

1

S CYERLTMRRVAY

n E[xn+1/x1,--°,xn] " *n (D-6)

Since the X~ process is a martingale, the right hand side of Eq. (D-6) be-

comes identically zero and the condition (D-4) immediately follows. Let

e
1]
IHe-13

Y, and the yn's satisfy the condition (D-4), then

i=1

E[Xn+1/X1,"°,Xn] - Etyl oot yn+1/X1""’Xn] (D-7)
E[Xn+1/x1’...’xn] - E[yl oot yn+1/y1,°°-,yn] (D-8)
E[Xn+1/X1’”."’Xn] LT A E[yn+1/y1,°'°,yn] (D—g)
E[xn+1/x1,~--,xn] =yt ty, F X (D-10)

Therefore, the xn's constitute a martingale and the inverse of the theorem

is proved.

<Theorem 2>

Let n,51,£2,'-° be any random variables with
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E[|n|] < o
Then, if ® is defined by

= s e D_.
Xn E[n/gla agn] (D-11)
the X =~ process is a martingale.

<Proof>

By definition

xn+1 = E[n/g13'°'3£n+1] (D-12)

Taking the conditional expectation of Eq. (D-12) given the conditioning

{51,"°,En} , we have in fact
E[xn+1/51,..-,gn] = E[E{n/gi""’5nf1}/€1""’€n] (D-13)

Since the o-field generated by '{gl,~--,£n+1} contains the o-field generated
by {51,"',€n} » the smoothing property 4 of Appendix B can be applied to
the right hand side of Eq. (D-13). Therefore, Eq. (D-13) becomes

Elx pq78ga0008 ] = Eln/g eenng ] = x (D-14)

with Probability 1. Since Xy5®**,%x ~ are random variables on the sample

space of 51,---,gn .

78 50008 1 = x (D-15)

B[xn+1/X1:"'axn:gls"°3gn] = E[x n

n+1l

with Probability 1. Taking the conditional expectation of both sides of Eq.
(D-15) given {xl,---,xn} and using the smoothing Property 4 of Appendix B,

the martingale property is obtained.
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L[h{xn+1/x1,'-°,xn,ﬁ,°",En}/xl,'°',Xn] = E[Xn/xl,"’,xn] (D-16)

E[x

n+1/xl’...’xn] - X (D-17)

n

Therefore, Theorem 2 is proved.



APPENDIX E

TRACE OF MATRIX

Let A be an (nxn) square matrix and aij represent the element
of ith row and jth column, then the trace of A , denoted by tr(A) , is

the sum of the diagonal elements of A , and similarily of AT s, 1.e.,

. . ) n . .
tr(A) = tr(A') = a +eeta = ] oa (E-1)

<Theorem 3>

Let A bé any (nxm) matrix and aij represent the element of
ith row and jth column, then AAT and ATA are (nxn) and (mxm) square
matricés respectively, and‘their trace is uniquely determined by the sum of

square of elements, agj s l.e.,

tr(AAT) = tr(ATA) (E-2)

"
Ie~1g
o~
o1}
N

If A is defined to be

A = V-V ' (E-3)

~

where V 1is an (nxm) matrix with elements vij and V 1is an approxima-
tion of V , with elements oij ,» then A represents the approximation error
with elements (vij'— Gij) and, hence, tr (AAT) is the sum of the square
errors , (vij - Gij)z . Therefore, tr(AAT) would be a sensible criteria to
be minimized and the solution V is the least square error solution. If V
is a matrix of random variables vij and the risk, }trE[AAT] is minimized,

then the solution V is the minimum variance estimate. Note that V 1is not

necessarily a vector.
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APPENDIX F

STOCHASTIC FUNDAMENTAL LEMMAS AND OPTIMALITY CONDITION

<Lemma 1>

If X is a random variable, and if
E[XY] = O (F-1)

for every deterministic Y (or every least fine o-field measurable random

variable) then,

E[X] = © a.s. (F-2)
<Proof>
E[XY] = ©
E[X]Y = 0 a.s.
since Y # O
E[X] = O© a.s.
<Lemma 2>
If X is a random variable, and if
E[XY] = 0 (F-3)

for every w-function Y measurable with resepct to the o-field A of the

measurable w set , then
E[X/A] = o0 a.s. (F-4)

éProof>

For the convenience of notation, ¥ denotes the conditional expec-

tation E[X/A] .
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E[XY] = E[(X - X + X)Y] " (F-5)
Applying the smoothing property U4, Eq. (F-5) becomes

E[XY] X)Y/A}] + E[XY/A] a.s. (F-6)

E[E{(X

E[XY] E[XY] (F-7)

n
o
jol]
4]

Since both X and Y are A measurable random variables and Y dis-arbi-

trary, it is possible to choose Y = X , then Eq. (F-7) becomes
E[XY] = E[RY] = E[X?] = 0  a.s. (F-8)
The above is true only for X2 = 0 . Therefore,

2 = E[X/Al = o0 a.s.

<Lemma 3>
If X(w,t) 1is a stochastic process defined on the set [ti’tQ]

te[tl,tQ] , and if
t
J E[X(w,t)Y(w,t)]dt = 0 ’ ' (F-9)
t
1

for every random process Y(w,t) measurable with respect to a o~-field A(t) ,

te[tl,tQ] » then
- E[X(w,t)/A(t)] = o0 a.s. (F-10)
for every t , te[tl,t2] .
<Proof>
t

2
J Efxylat = o
Y
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t
2
j E[E{XY/A(t)}]dt = 0 (F-11)
t
1
)
J E{E{X/A(£)} « Y]dt = o0 (F-12)
t
1

Suppose that E[X(w,t)/A(t)] # 0 . Since Y is arbitrary A(t) measur-

ale function, we can choose Y such that
Y(w,t) = E[X(w,t)/A(t)] (F-13)

Therefore, Eq. (F~12) becomes
t 5 .
f E[{E[X(w,t)/A(t)}2]dt = O a.s. - (F-11)
t .
1

The above is positive unless E[X(w,t)/A(t)] 0 for any . t , te[t1’t2] .

Therefore,

ElX(w,t)/A(t)] = 0 a.s. te[t1’t2] (F-15)

Let's consider the following risk function
_ T T
R(g) = trE[(X - g)(X -g)']1 = E[(X-g) (X - g)] (F-16)

where X 1is an nx1 vector. If we want to minimize the risk (F-16) with
any B-measurable function g , then the solution g is the minimum variance

estimate. In order to minimize R , we introduce a variation dg on g , i.e.
g = g+ 6g (F-17)
Then the risk (F-16) becomes
R(E + 6g) = E[(X -8 +6g) (X - ¢ + 6g)] (F-18)

Expanding Eq. (F-18) about g , the following first variation is obtained.
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SR(Z) = E[(X - 8)T6g] + E[8g (X - 8)] (F-19)

For the minimum of R , the first variation &R must be zero and, hence, the

following must be satisfied
~\T _
E[(X -g)'6g]l] = 0O (F-20)

Since a variation 6g 1is an arbitrary B-measurable function, the stochastic
fundamental lemma 2 can be applied and the optimality condition therefore is

obtained as follows:
E[(X - g)/B] = o0 a.s. (F-21)
g = E[X/B] a.s. (F-22)

The solution g is the minimum variance estimate and is given as the condi-

tional expectation of X given B .
If we want to minimize the risk (F-16) with a linear function of

Y which is an (mx1) random variable observed, i.e.
g = KY ‘ (F-23)

instead of any B-measurable function, then the solution g is the linear
minimum variance estimate. This time we have to determine an (nxm) matrix
K within a class of B-measurable functions such that the risk (F-16) is

minimized. Introducing a variation 6K on K , the risk (F-16) becomes
R(K + 6K) = trE[{X - (K + SK)YHX - (R + 6K)Y} ] V(F—Qu)
Expapding Eq. (F-24) about K , the first variation follows, i.e.
SR(K) = trE[(X - RY)YT6KT] + trE[KY(X - RY)'] = o0 (F-25)

Since 6K 1s an arbitrary B-measurable function, the stochastic fundamental

Lemma 2 is applied and the optimality condition is obtained.
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E[(X - KY)Y'/B] = o a.s. (F-26)
T ~ T

E[XY" /R] = KE[YY /B] a.s. (F-27)

£ = EmxY/BUE[YY/BIYY aus. (F-28)

Therefore, the linear minimum variance estimate is given by
g = E[XYT/B]{E[YYT/B]}_iY (F-29)

For the scalar random variables X and Y , the linear minimum variance es-

timate X is obtained from Eq. (F-29) as follows:

_ E[XY/B] )
2 = treE Y (F-30)

If we choose K with a deterministic number which is measurable over the
least fine o-field, the conditioning becomes unconditional and the linear

minimum variance estimate (F-30) becomes

== Y (F-31)
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